Check Your Understanding Geometry - Area and Volume

Key Concepts	Basic Questions	Intermediate Questions	Advanced Questions
Area	1	4,5	
Surface Area		2,7	
Volume		$3,6,7$	
Equivalency and Missing Measures		$4,5,6,7$	

Remember:

- Shapes (2D) are equivalent if they have the same areas
- Solids (3D) are equivalent if they have the same volumes

1) Determine the area of the following regular shapes.
a)

b) An equilateral triangle with a perimeter of 18 m .
c)

d) An octagon with a perimeter of 32 mm and an apothem of 4.828 mm
2) Determine the surface area of the following solids:
$\begin{array}{lll}\text { a) A tetrahedron with side } & \text { b) A cube with side length } 7 & \text { c) An octahedron with side }\end{array}$ length 3 cm . mm .
d) A dodecahedron with
e) An icosahedron with side side length 2.7 in . length 1.5 ft .
3) Determine the volume of the following solids:
$\begin{array}{ll}\text { a) A tetrahedron with side } & \text { b) A cube with side length } \\ \text { length } 1.3 \mathrm{~m} . & 12 \mathrm{~cm} .\end{array}$
d) A dodecahedron with side length 3.1 in .
e) An icosahedron with side length 0.8 ft .
c) An octahedron with side length 1.3 mm .
4) The regular pentagon and the equilateral triangle (shown below) are equivalent. Determine the side length of the triangle.

5) A square with side lengths of 21 mm is equivalent to heptagon with an apothem of 11.438 mm . Determine the side length of the heptagon.
6) An octahedron and a cube are equivalent. The octahedron has side lengths of 0.9 m . Determine the side lengths of the cube.
7) A tetrahedron and a dodecahedron are equivalent. The tetrahedron has side lengths of 5.4 in . Determine the surface area of the dodecahedron.

Answer Key

1a) $A=49 \mathrm{~cm}^{2}$
b) $A=15.59 \mathrm{~m}^{2}$
c) $A=374.11 \mathrm{~cm}^{2}$
d) $A=77.25 \mathrm{~mm}^{2}$
2a) $S A=15.59 \mathrm{~cm}^{2}$
b) $S A=294 \mathrm{~mm}^{2}$
c) $S A=5.85 \mathrm{~m}^{2}$
d) $S A=150.51 \mathrm{in}^{2}$ e) $S A=19.49 f t^{2}$
3a) $V=0.26 \mathrm{~m}^{3}$
b) $V=1728 \mathrm{~cm}^{3}$
c) $V=1.04 \mathrm{~mm}^{3}$
d) $V=228.29 \mathrm{in}^{3}$
e) $V=1.12 f t^{3}$
4) The side lengths of the triangle are 3.99 cm
5) The side lengths of the heptagon are 11.02 mm
6) The side lengths of the cube are 0.7 m
7) The surface area of the dodecahedron is $37.07 \mathrm{in}^{2}$

