Exponential Functions

Exponents Review

Recall:

 $3⁵ = 3 \times 3 \times 3 \times 3 \times 3$ $x⁵ = x \times x \times x \times x \times x$

Laws of Exponents

Name	Law	Example
Product	$a^m \cdot a^n = a^{m+n}$	$3^2 \cdot 3^5 = 3^{2+5} = 3^7$
Quotient	$a^m \div a^n = \frac{a^m}{a^n} = a^{m-n}$	$3^5 \div 3^2 = \frac{3^5}{3^2} = 3^{5-2} = 3^3$
Power	$(a^m)^n = a^{m \cdot n}$	$(3^2)^5 = 3^{2 \cdot 5} = 3^{10}$
Negative Exponent	$a^{-m} = \frac{1}{a^m}$	$3^{-5} = \frac{1}{3^5}$
Zero Exponent	$a^0 = 1$	$3^0 = 1$
Fractional Exponent	$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$3^{\frac{2}{5}} = \sqrt[5]{3^2}$
Power of a Product	$(ab)^m = a^m \cdot b^m$	$(3 \cdot 4)^5 = 3^5 \cdot 4^5$
Power of a Fraction	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$	$\left(\frac{3}{4}\right)^5 = \frac{3^5}{4^5}$

Solving Exponents

Ex:

a)

b) c) $5^{3} = x$ $2^{-3} = x$ $3^{x} = \frac{1}{27}$ 125 = x $\frac{1}{2^{3}} = x$ $3^{3} = 27$ $\frac{1}{8} = x$ So... $3^{-3} = \frac{1}{27}$ So... x = -3

	e)		f)	
$7^{(5-x)} = \frac{1}{49}$ $7^2 = 49$		$x^6 = 64$		$5^{2x} = 625$
		$x = \sqrt[6]{64}$		$5^4 = 625$
		x = 2	So	

So...

d)

$$7^{-2} = \frac{1}{49} \qquad \qquad 4 = 2x \\ 2 = x$$

So...

$$-2 = 5 - x$$
$$-7 = -x$$
$$7 = x$$

Simplify Using Laws of Exponents

a)
b)

$$\begin{pmatrix} x^{5} \\ x^{3} \end{pmatrix} (x^{-1}) \qquad 6 \begin{pmatrix} a^{2} \\ b^{6} \end{pmatrix} \begin{pmatrix} b^{-2} \\ a^{4} \end{pmatrix} \qquad x^{7} \begin{pmatrix} x^{-2} \\ x^{-5} \end{pmatrix}^{3} \\
= (x^{2})(x^{-1}) \qquad = 6 \begin{pmatrix} a^{2}b^{-2} \\ b^{6}a^{4} \end{pmatrix} \qquad = x^{7}(x^{3})^{3} \\
= x \qquad = 6(a^{-2})(b^{-8}) \qquad = x^{16} \\
= \frac{6}{a^{2}b^{8}}$$

d)
e)

$$\begin{array}{cccc}
(-3a)^4(a^4b^7) & (4x^2)(xy^3)^2 \\
= (-3)^4a^4(a^4b^7) & (4x^2)x^2y^6 \\
= 81a^8b^7 & = \frac{(4x^2)x^2y^6}{2x^4y^6z^{-3}} & = \left(\frac{25}{5^4}\right)^{-3/2} \\
= \frac{4x^4y^6}{2x^4y^6z^{-3}} & = \left(\frac{5^2}{5^4}\right)^{-3/2} \\
= \frac{2}{z^{-3}} & = (5^{-2})^{-3/2} \\
= 2z^3 & = 5^3 \\
= 125 \end{array}$$

g)

Exponential Basic Function

The basic exponential function is $y = c^x$, where c > 0 and $c \neq 1$

The base (c) determines whether the function is increasing or decreasing

- If *c* > 1 the function is increasing
- If 0 < c < 1 the function is decreasing

The base (c) also determines the steepness or the curve

- If c > 1, a larger c value leads to a steeper curve
- If 0 < c < 1, a smaller c value leads to a steeper curve

The basic function as an asymptote at y = 0

Sketching Exponential Functions

To sketch an exponential function, create a table of values, plot the points, and connect the dots, remembering the asymptote.

Ex: Create a table of values and sketch the following functions

Exponential Transformed Function

Just like the other functions we've looked at this year, the transformed exponential function has the parameters a, b, h, and k.

$$y = ac^{b(x-h)} + k$$

where $c \neq 1, c > 0, a \neq 0, b \neq 0$

a and b determine the direction of the curve (increasing or decreasing)

- Negative a is a reflection over the x-axis
- Negative b is a reflection over the y-axis

y = k is the asymptote

h is a vertical shift

Sketching Transformed Exponential Functions

To sketch an exponential function, create a table of values, plot the points, and connect the dots, remembering the asymptote.

Ex: Create a table of values and sketch the following functions

c)

d)

 $y = \left(\frac{1}{2}\right)^{-x} \text{ or } y = 2^x$

Finding the Rule of Exponential Functions

Recall $y = ac^{b(x-h)} + k$

Using the laws of exponents, we can re-write this as $y = ac^{x} + k$

Ex: Using the laws of exponents, re-write each function as $y = ac^{x} + k$

a)
$$y = 7\left(\frac{1}{2}\right)^{-2(x-2)} + 6$$

 $y = 7\left(\frac{1}{2}\right)^{-2(x-2)} + 6$
 $y = 7\left(\left(\frac{1}{2}\right)^{-2}\right)^{(x-2)} + 6$
 $y = 7(4)^{(x-2)} + 6$
 $y = 7(4)^{(x-2)} + 6$
 $y = 7(4)^{(x)} \div 4^2 + 6$
 $y = 7 \cdot 4^x \div 16 + 6$
 $y = \frac{7}{16} \cdot 4^x + 6$
b) $y = 5(3)^{2x+2} + 7$
 $y = 5(3)^{2(x+1)} + 7$
 $y = 5(3)^{2(x+1)} + 7$
 $y = 5(9)^{(x+1)} + 7$
 $y = 5 \cdot 9^x \cdot 9^{(1)} + 7$
 $= 45 \cdot 9^x + 7$

We will use this simplified version of the rule when finding the rule.

- a is the initial value
- k is the value of the asymptote (or constant)
- c is the base (or rate of change)
 - ex: "triples" means c = 3; "doubles" means c = 2; "half" means c = 0.5
 - If rate of change is given as a percent:
 - If increasing, $c = 1 + \frac{\%}{100}$ If decreasing, $c = 1 \frac{\%}{100}$ •

 - Ex: loses 30% means $c = 1 \frac{30}{100} = 0.7$
 - Ex: increases 35% means $c = 1 + \frac{35}{100} = 1.35$ •
 - Ex: earns 4.25% interest means c = 1 + ^{4.25}/₁₀₀ = 1.0425
 Ex: depreciates by 12% means c = 1 ¹²/₁₀₀ = 0.88

To find a rule from words, determine a, c, and k and write as a rule

a) You invest \$2000 into a savings account with an interest rate of 4.125% compounded annually.

$$a = 2000$$
 $c = 1 + \frac{4.125}{100} = 1.0415$ $k = 0$

$$y = 2000^{1.0415}$$

b) 200 bacteria are growing in a petri dish. Every seven days the population increases by 17%.

$$a = 200$$
 $c = 1 + \frac{17}{100} = 1.17$ $k = 0$

$$y = 200^{1.17}$$

c) There are currently 125 fish in a lake. The population of fish is doubling every year.

$$a = 125 \qquad \qquad c = 2 \qquad \qquad k = 0$$

 $y = 125^2$

d) A ball is dropped from 2m above a table that is 0.75m above the floor. The ball only regains 80% of its height after each bounce.

$$a = 2$$
 $c = 1 - \frac{20}{100} = 0.8$ $k = 0.75$

$$y = 2^{0.8} + 0.75$$

To find a rule given 2 points (given in a table of value, on a graph, or in a word problem) we can find the rule using a system of equations

- 1. Use $y = ac^{x} + k$
- 2. Plug in points to make 2 equations
- 3. Eliminate 1 variable by dividing (usually eliminate a)
- 4. Solve for c
- 5. Use c to solve for a
- 6. Write the rule

a) Find the rule of an exponential function (using $y = ac^x$) passing through the points

(1, 24) and (4, 648)

Step 1

Step 2

$$y = ac^x$$

Step 3

Function 1: $648 = ac^4$	$648 = ac^4$
Function 2: $24 = ac^1$	$\div 24 = ac^1$
	$27 = c^3$

Step 4

Step 5

$27 = c^3$	$648 = ac^4$
$\sqrt[3]{27} = c$	$648 = a(3)^4$
3 = c	648 = 81a
	8 = a

Step 6

 $y = 8(3)^{x}$

b) Find the rule of an exponential function (using $y = ac^x$) passing through the points (-2, -0.16) and (4, -2500)Step 1

$$y = ac^x$$

Step 3

 $-2500 = ac^4$ $\div -0.16 = ac^{-2}$ $15625 = c^6$

Step 4

Step 2

Function 1: $-2500 = ac^4$

Function 2: $-0.16 = ac^{-2}$

Step 5

$15625 = c^6$	$-0.16 = ac^{-2}$
$\sqrt[6]{15625} = c$	$-0.16 = a(5)^{-2}$
5 = c	-0.16 = 0.04a
	-4 = a

Step 6

 $y = -4(5)^{x}$

c) Find the rule of an exponential function passing through the points (1, 7.4) and (2, 5.78) with an asymptote at y = 5

Step 1

 $y = ac^{x} + k$ Step 2
Function 1: 7.4 = $ac^{1} + 5$ $2.4 = ac^{1}$ Function 2: 5.78 = $ac^{2} + 5$ $0.78 = ac^{2}$ Step 4 0.325 = c $7.4 = ac^{1} + 5$

$$7.4 = ac^{1} + 5$$

$$7.4 = a(0.325)^{1} + 5$$

$$2.4 = 0.325a$$

$$7.38 = a$$

Step 6

 $y = 7.38(0.325)^x + 5$

Solving Exponential Functions

To solve for y, plug in x and solve.

Ex: Solve $f(x) = 3(4)^{x-2} - 192$ when x = 4

$$f(x) = 3(4)^{x-2} - 192$$

$$f(4) = 3(4)^{4-2} - 192$$

$$f(4) = 3(4)^2 - 192$$

$$f(4) = 3 \cdot 16 - 192$$

$$f(4) = 48 - 192$$

$$f(4) = -144$$

To solve for x

- Isolate the base(s)
- Make the bases the same
- When the bases are the same, exponents must be equation, so solve for x
- Note: We will also solve exponentials using logarithmic functions once we learn those

Ex: Solve for x

a)

$$3(4)^{x-2} - 192 = 0$$

$$3(4)^{x-2} = 192$$

$$(4)^{x-2} = 64$$

$$(4)^{x-2} = 4^{3}$$

$$x - 2 = 3$$

$$x = 5$$

 $11(7)^{2x-1} = 539$ (7)^{2x-1} = 49 (7)^{2x-1} = 7²

2x - 1 = 22x = 3x = 1.5

b)

d)

$$625\left(\frac{1}{5}\right)^{3x} - 1 = 0$$

$$625\left(\frac{1}{5}\right)^{3x} = 1$$

$$\left(\frac{1}{5}\right)^{3x} = \frac{1}{625}$$

$$\left(\frac{1}{5}\right)^{3x} = \frac{1}{5^4}$$

$$\left(\frac{1}{5}\right)^{3x} = \left(\frac{1}{5}\right)^4$$

$$3x = 4$$

$$x = \frac{4}{3}$$

Point of intersection

$$\begin{pmatrix} \frac{1}{4} \end{pmatrix}^{8x} = 2^{-10x+18} \\ (2^{-2})^{8x} = 2^{-10x+18} \\ (2)^{-16x} = 2^{-10x+18} \\ -16x = -10x + 18 \\ -6x = 18 \\ x = -3 \end{cases}$$

e)

$$\left(\frac{1}{2}\right)^x + 4 = 0$$

There is an asymptote at y = 4 and the function is increasing, so it never touches 0.

 $(3^{x+4})^2 = \left(\frac{1}{9}\right)^x$ $3^{2x+8} = \left(\frac{1}{9}\right)^x$ $3^{2x+8} = (3^{-2})^x$ $3^{2x+8} = (3)^{-2x}$

2x + 8 = -2x4x = -8x = -2

No solution.

f)

$$27(9)^{x+6} - 6 = \sqrt{3^{10}} - 6$$

$$27(9)^{x+6} = \sqrt{3^{10}}$$

$$27(9)^{x+6} = 243$$

$$(9)^{x+6} = 9$$

$$x + 6 = 1$$

$$x = -5$$

g)

$$2(3)^{x-4} = 2$$

$$(3)^{x-4} = 1$$

$$(3)^{x-4} = 3^{0}$$
Anything to the power of 0 is 1.

$$\begin{array}{c} x - 4 = 0 \\ x = 4 \end{array}$$

i)

$$27(9)^{x} = \sqrt{3^{10}}$$

$$27(9)^{x} = 3^{\frac{10}{2}}$$

$$3^{3} \cdot (9)^{x} = 3^{5}$$

$$3^{3} \cdot (3)^{2x} = 3^{5}$$

$$3^{3+2x} = 3^{5}$$

$$3 + 2x = 5$$

$$2x = 2$$

$$x = 1$$

Solving Exponential Inequalities

To solve exponential inequalities, change inequality to =, solve, and then consult a sketch to answer the question over the appropriate domain (or use a test point).

To use a test point:

- pick a number either larger or smaller than the solution
- Plug that into the inequality and solve
- If you get a true statement, you know the answer must include that point. If you get a false statement, you know the solution cannot include that point.
- All solutions will either be $]-\infty, x],]-\infty, x[, [x, \infty[, or]x, \infty[$

Ex: Solve $234(3)^{-0.08x} - 26 > 0$

Ex: Solve $81^{x-9} \ge 1$

Inverse of Exponential Functions

To find the inverse of exponential functions, we will need logarithmic functions.