Exponential Functions

Exponents Review

Recall:
$3^{5}=3 \times 3 \times 3 \times 3 \times 3$
$x^{5}=x \times x \times x \times x \times x$

Laws of Exponents

Name	Law	Example
Product	$a^{m} \cdot a^{n}=a^{m+n}$	$3^{2} \cdot 3^{5}=3^{2+5}=3^{7}$
Quotient	$a^{m} \div a^{n}=\frac{a^{m}}{a^{n}}=a^{m-n}$	$3^{5} \div 3^{2}=\frac{3^{5}}{3^{2}}=3^{5-2}=3^{3}$
Power	$\left(a^{m}\right)^{n}=a^{m \cdot n}$	$\left(3^{2}\right)^{5}=3^{2 \cdot 5}=3^{10}$
Negative Exponent	$a^{-m}=\frac{1}{a^{m}}$	$3^{-5}=\frac{1}{3^{5}}$
Zero Exponent	$a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$	$3^{0}=1$
Fractional Exponent	$(a b)^{m}=a^{m} \cdot b^{m}$	$3^{\frac{2}{5}}=\sqrt[5]{3^{2}}$
Power of a Product	$\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$	$(3 \cdot 4)^{5}=3^{5} \cdot 4^{5}$
Power of a Fraction		$\left(\frac{3}{4}\right)^{5}=\frac{3^{5}}{4^{5}}$

Solving Exponents

Ex:
a)

$$
\begin{gathered}
5^{3}=x \\
125=x
\end{gathered}
$$

b)

$$
\begin{aligned}
2^{-3} & =x \\
\frac{1}{2^{3}} & =x \\
\frac{1}{8} & =x
\end{aligned}
$$

e)

$$
\begin{gathered}
7^{(5-x)}=\frac{1}{49} \\
7^{2}=49
\end{gathered}
$$

So...

$$
7^{-2}=\frac{1}{49}
$$

$$
\begin{gathered}
x^{6}=64 \\
x=\sqrt[6]{64} \\
x=2
\end{gathered}
$$

f)

$$
\begin{gathered}
5^{2 x}=625 \\
5^{4}=625
\end{gathered}
$$

So...

$$
\begin{gathered}
4=2 x \\
2=x
\end{gathered}
$$

So...

$$
\begin{gathered}
-2=5-x \\
-7=-x \\
7=x
\end{gathered}
$$

Simplify Using Laws of Exponents
a) b)

$$
\begin{gathered}
\left(\frac{x^{5}}{x^{3}}\right)\left(x^{-1}\right) \\
=\left(x^{2}\right)\left(x^{-1}\right) \\
=x
\end{gathered}
$$

$$
\begin{gathered}
6\left(\frac{a^{2}}{b^{6}}\right)\left(\frac{b^{-2}}{a^{4}}\right) \\
=6\left(\frac{a^{2} b^{-2}}{b^{6} a^{4}}\right) \\
=6\left(a^{-2}\right)\left(b^{-8}\right) \\
=\frac{6}{a^{2} b^{8}}
\end{gathered}
$$

d)

$$
\begin{gathered}
(-3 a)^{4}\left(a^{4} b^{7}\right) \\
=(-3)^{4} a^{4}\left(a^{4} b^{7}\right) \\
=81 a^{8} b^{7}
\end{gathered}
$$

e)

$$
\begin{gathered}
\frac{\left(4 x^{2}\right)\left(x y^{3}\right)^{2}}{2 x^{4} y^{6} z^{-3}} \\
=\frac{\left(4 x^{2}\right) x^{2} y^{6}}{2 x^{4} y^{6} z^{-3}} \\
=\frac{4 x^{4} y^{6}}{2 x^{4} y^{6} z^{-3}} \\
=\frac{2}{z^{-3}} \\
=2 z^{3}
\end{gathered}
$$

f)

$$
\begin{gathered}
x^{7}\left(\frac{x^{-2}}{x^{-5}}\right)^{3} \\
=x^{7}\left(x^{3}\right)^{3} \\
=x^{7}(x)^{9} \\
=x^{16}
\end{gathered}
$$

$$
\begin{gathered}
\sqrt{\left(\frac{25}{5^{4}}\right)^{-3}} \\
=\left(\frac{25}{5^{4}}\right)^{-3 / 2} \\
=\left(\frac{5^{2}}{5^{4}}\right)^{-3 / 2} \\
=\left(5^{-2}\right)^{-3 / 2} \\
=5^{3} \\
=125
\end{gathered}
$$

g)

$$
\begin{gathered}
\frac{16^{3} \cdot 4^{2}}{4^{3}} \\
=\frac{\left(4^{2}\right)^{3} \cdot 4^{2}}{4^{3}} \\
=\frac{4^{6} \cdot 4^{2}}{4^{3}} \\
=\frac{4^{8}}{4^{3}} \\
=4^{5} \\
=1024
\end{gathered}
$$

h)

$$
\begin{gathered}
\begin{array}{c}
\frac{\sqrt[3]{81} \cdot \sqrt{9} \cdot 3}{27} \\
= \\
=\frac{\sqrt[3]{3^{4}} \cdot \sqrt{3^{2}} \cdot 3}{3^{3}} \\
=\frac{3^{4 / 3} \cdot 3 \cdot 3}{3^{3}} \\
\left.=3^{\left(\frac{10}{3}-3\right.}\right) \\
=3^{1 / 3}
\end{array}
\end{gathered}
$$

Exponential Basic Function

The basic exponential function is $y=c^{x}$, where $c>0$ and $c \neq 1$

The base (c) determines whether the function is increasing or decreasing

- If $c>1$ the function is increasing
- If $0<c<1$ the function is decreasing

The base (c) also determines the steepness or the curve

- If $c>1$, a larger c value leads to a steeper curve
- If $0<c<1$, a smaller c value leads to a steeper curve

The basic function as an asymptote at $y=0$

Sketching Exponential Functions

To sketch an exponential function, create a table of values, plot the points, and connect the dots, remembering the asymptote.

Ex: Create a table of values and sketch the following functions
a)

$$
y=2^{x}
$$

b) $y=\left(\frac{1}{2}\right)^{x}$ or $y=2^{-x}$

\mathbf{x}	\mathbf{y}
-3	$\frac{1}{8}$
-2	$\frac{1}{4}$
-1	$\frac{1}{2}$
0	1
1	2
2	4

x	y
-3	8
-2	4
-1	2
0	$\frac{1}{2}$
1	$\frac{1}{2}$
2	$\frac{1}{4}$
3	$\frac{1}{8}$

c) $\quad y=3^{x}$

\mathbf{x}	\mathbf{y}
-3	$\frac{1}{27}$
-2	$\frac{1}{9}$
-1	$\frac{1}{3}$
0	1
1	3
2	9
3	27

d)

$$
y=\left(\frac{1}{3}\right)^{x} \text { or } y=3^{-x}
$$

x	y
-3	27
-2	9
-1	3
0	1
1	$\frac{1}{3}$
2	$\frac{1}{9}$
3	$\frac{1}{27}$

Exponential Transformed Function

Just like the other functions we've looked at this year, the transformed exponential function has the parameters a, b, h, and k.

$$
\begin{gathered}
y=a c^{b(x-h)}+k \\
\text { where } c \neq 1, c>0, a \neq 0, b \neq 0
\end{gathered}
$$

a and b determine the direction of the curve (increasing or decreasing)

- Negative a is a reflection over the x-axis
- Negative b is a reflection over the y-axis
$y=k$ is the asymptote
h is a vertical shift

If $c>1$

If $0<c<1$

Sketching Transformed Exponential Functions

To sketch an exponential function, create a table of values, plot the points, and connect the dots, remembering the asymptote.

Ex: Create a table of values and sketch the following functions
a)

b)

$$
y=2^{x}+3
$$

x	y
-3	3.125
-2	3.25
-1	3.5
0	4
1	5
2	9
3	11

c)

Finding the Rule of Exponential Functions

Recall $y=a c^{b(x-h)}+k$
Using the laws of exponents, we can re-write this as $y=a c^{x}+k$

Ex: Using the laws of exponents, re-write each function as $y=a c^{x}+k$
a) $y=7\left(\frac{1}{2}\right)^{-2(x-2)}+6$
b) $y=5(3)^{2 x+2}+7$

$$
\begin{gathered}
y=7\left(\frac{1}{2}\right)^{-2(x-2)}+6 \\
y=7\left(\left(\frac{1}{2}\right)^{-2}\right)^{(x-2)}+6 \\
y=7(4)^{(x-2)}+6 \\
y=7(4)^{(x)} \div 4^{2}+6 \\
y=7 \cdot 4^{x} \div 16+6 \\
y=7 \cdot 4^{x} \cdot \frac{1}{16}+6 \\
y=\frac{7}{16} \cdot 4^{x}+6
\end{gathered}
$$

$$
y=5(3)^{2 x+2}+7
$$

$$
y=5(3)^{2(x+1)}+7
$$

$$
y=5\left(3^{2}\right)^{(x+1)}+7
$$

$$
y=5(9)^{(x+1)}+7
$$

$$
y=5 \cdot 9^{x} \cdot 9^{(1)}+7
$$

$$
=5 \cdot 9^{x} \cdot 9+7
$$

$$
=45 \cdot 9^{x}+7
$$

We will use this simplified version of the rule when finding the rule.

- $\quad a$ is the initial value
- k is the value of the asymptote (or constant)
- $\quad c$ is the base (or rate of change)
- ex: "triples" means $c=3$; "doubles" means $c=2$; "half" means $c=0.5$
- If rate of change is given as a percent:
- If increasing, $c=1+\frac{\%}{100}$
- If decreasing, $c=1-\frac{\%}{100}$
- Ex: loses 30% means $c=1-\frac{30}{100}=0.7$
- Ex: increases 35% means $c=1+\frac{35}{100}=1.35$
- Ex: earns 4.25% interest means $c=1+\frac{4.25}{100}=1.0425$
- Ex: depreciates by 12% means $c=1-\frac{12}{100}=0.88$

To find a rule from words, determine a, c, and k and write as a rule
a) You invest $\$ 2000$ into a savings account with an interest rate of 4.125% compounded annually.

$$
a=2000 \quad c=1+\frac{4.125}{100}=1.0415 \quad k=0
$$

$$
y=2000^{1.0415}
$$

b) 200 bacteria are growing in a petri dish. Every seven days the population increases by 17%.

$$
\begin{gathered}
a=200 \quad c=1+\frac{17}{100}=1.17 \quad k=0 \\
y=200^{1.17}
\end{gathered}
$$

c) There are currently 125 fish in a lake. The population of fish is doubling every year.

$$
\begin{array}{lcc}
a=125 & c=2 & k=0 \\
y=125^{2} &
\end{array}
$$

d) A ball is dropped from 2 m above a table that is 0.75 m above the floor. The ball only regains 80% of its height after each bounce.

$$
a=2
$$

$$
c=1-\frac{20}{100}=0.8 \quad k=0.75
$$

$$
y=2^{0.8}+0.75
$$

To find a rule given 2 points (given in a table of value, on a graph, or in a word problem) we can find the rule using a system of equations

1. Use $y=a c^{x}+k$
2. Plug in points to make 2 equations
3. Eliminate 1 variable by dividing (usually eliminate a)
4. Solve for c
5. Use c to solve for a
6. Write the rule
a) Find the rule of an exponential function (using $y=a c^{x}$) passing through the points
$(1,24)$ and $(4,648)$
Step 1

$$
y=a c^{x}
$$

Step 2
Function 1: $648=a c^{4}$
Function 2: $24=a c^{1}$

Step 4

$$
\begin{gathered}
27=c^{3} \\
\sqrt[3]{27}=c \\
3=c
\end{gathered}
$$

Step 3

$$
\begin{gathered}
648=a c^{4} \\
\div 24=a c^{1} \\
\hline 27=c^{3}
\end{gathered}
$$

Step 5

$$
\begin{gathered}
648=a c^{4} \\
648=a(3)^{4} \\
648=81 a \\
8=a
\end{gathered}
$$

Step 6

$$
y=8(3)^{x}
$$

b) Find the rule of an exponential function (using $y=a c^{x}$) passing through the points $(-2,-0.16)$ and $(4,-2500)$

Step 1

$$
y=a c^{x}
$$

Step 2
Function 1: $-2500=a c^{4}$
Function 2: $-0.16=a c^{-2}$

Step 4

$$
\begin{gathered}
15625=c^{6} \\
\sqrt[6]{15625}=c \\
5=c
\end{gathered}
$$

Step 3

$$
\begin{aligned}
-2500 & =a c^{4} \\
\div-0.16 & =a c^{-2} \\
\hline 15625 & =c^{6}
\end{aligned}
$$

Step 5

$$
\begin{gathered}
-0.16=a c^{-2} \\
-0.16=a(5)^{-2} \\
-0.16=0.04 a \\
-4=a
\end{gathered}
$$

Step 6

$$
y=-4(5)^{x}
$$

c) Find the rule of an exponential function passing through the points $(1,7.4)$ and $(2,5.78)$ with an asymptote at $y=5$

Step 1

$$
y=a c^{x}+k
$$

Step 2

Function 1: $7.4=a c^{1}+5$

$$
2.4=a c^{1}
$$

Function 2: $5.78=a c^{2}+5$

$$
0.78=a c^{2}
$$

Step 4

$$
0.325=c
$$

Step 3

$$
\begin{gathered}
0.78=a c^{2} \\
\div 2.4=a c^{1} \\
\hline 0.325=c
\end{gathered}
$$

Step 5

$$
\begin{gathered}
7.4=a c^{1}+5 \\
7.4=a(0.325)^{1}+5 \\
2.4=0.325 a \\
7.38=a
\end{gathered}
$$

Step 6

$$
y=7.38(0.325)^{x}+5
$$

Solving Exponential Functions

To solve for y, plug in x and solve.
Ex: Solve $f(x)=3(4)^{x-2}-192$ when $x=4$

$$
\begin{gathered}
f(x)=3(4)^{x-2}-192 \\
f(4)=3(4)^{4-2}-192 \\
f(4)=3(4)^{2}-192 \\
f(4)=3 \cdot 16-192 \\
f(4)=48-192 \\
f(4)=-144
\end{gathered}
$$

To solve for x

- Isolate the base(s)
- Make the bases the same
- When the bases are the same, exponents must be equation, so solve for x
- Note: We will also solve exponentials using logarithmic functions once we learn those

Ex: Solve for x
a)

$$
\begin{gathered}
3(4)^{x-2}-192=0 \\
3(4)^{x-2}=192 \\
(4)^{x-2}=64 \\
(4)^{x-2}=4^{3} \\
x-2=3 \\
x=5
\end{gathered}
$$

b)

$$
\begin{gathered}
625\left(\frac{1}{5}\right)^{3 x}-1=0 \\
625\left(\frac{1}{5}\right)^{3 x}=1 \\
\left(\frac{1}{5}\right)^{3 x}=\frac{1}{625} \\
\left(\frac{1}{5}\right)^{3 x}=\frac{1}{5^{4}} \\
\left(\frac{1}{5}\right)^{3 x}=\left(\frac{1}{5}\right)^{4} \\
3 x=4 \\
x=\frac{4}{3}
\end{gathered}
$$

c)

$$
\begin{gathered}
11(7)^{2 x-1}=539 \\
(7)^{2 x-1}=49 \\
(7)^{2 x-1}=7^{2} \\
2 x-1=2 \\
2 x=3 \\
x=1.5
\end{gathered}
$$

d)

$$
\begin{gathered}
\left(\frac{1}{4}\right)^{8 x}=2^{-10 x+18} \\
\left(2^{-2}\right)^{8 x}=2^{-10 x+18} \\
(2)^{-16 x}=2^{-10 x+18} \\
-16 x=-10 x+18 \\
-6 x=18 \\
x=-3
\end{gathered}
$$

e)

$$
\left(\frac{1}{2}\right)^{x}+4=0
$$

There is an asymptote at $y=4$ and the function is increasing, so it never touches 0 .

No solution.
f)

$$
\begin{aligned}
27(9)^{x+6}-6 & =\sqrt{3^{10}}-6 \\
27(9)^{x+6} & =\sqrt{3^{10}} \\
27(9)^{x+6} & =243 \\
(9)^{x+6} & =9
\end{aligned}
$$

$$
\begin{gathered}
x+6=1 \\
x=-5
\end{gathered}
$$

g)

$$
\begin{gathered}
\left(3^{x+4}\right)^{2}=\left(\frac{1}{9}\right)^{x} \\
3^{2 x+8}=\left(\frac{1}{9}\right)^{x} \\
3^{2 x+8}=\left(3^{-2}\right)^{x} \\
3^{2 x+8}=(3)^{-2 x}
\end{gathered}
$$

h)

$$
\begin{gathered}
2 x+8=-2 x \\
4 x=-8 \\
x=-2
\end{gathered}
$$

i)

$$
\begin{gathered}
27(9)^{x}=\sqrt{3^{10}} \\
27(9)^{x}=3^{\frac{10}{2}} \\
3^{3} \cdot(9)^{x}=3^{5} \\
3^{3} \cdot(3)^{2 x}=3^{5} \\
3^{3+2 x}=3^{5} \\
\\
3+2 x=5 \\
2 x=2 \\
x=1
\end{gathered}
$$

Solving Exponential Inequalities

To solve exponential inequalities, change inequality to $=$, solve, and then consult a sketch to answer the question over the appropriate domain (or use a test point).

To use a test point:

- pick a number either larger or smaller than the solution
- Plug that into the inequality and solve
- If you get a true statement, you know the answer must include that point. If you get a false statement, you know the solution cannot include that point.
- All solutions will either be $]-\infty, x],]-\infty, x[,[x, \infty[$, or $] x, \infty[$

Ex: Solve $234(3)^{-0.08 x}-26>0$

$234(3)^{-0.08 x}-26>0$	Test point
$234(3)^{-0.08 x}-26=0$	Let $x=0$
$234(3)^{-0.08 x}=26$	$234(3)^{-0.08 x}-26>0$
$(3)^{-0.08 x}=\frac{1}{9}$	$234(3)^{0}-26>0$
$(3)^{-0.08 x}=9^{-1}$	$234(1)-26>0$
$(3)^{-0.08 x}=3^{-2}$	$234-26>0$
$-0.08 x=-2$	$208>0$
$x=25$	TRUE
	So solution must include $x=0$
	$\therefore]-\infty, 25[$

Sketch

$\therefore]-\infty, 25[$

Ex: Solve $81^{x-9} \geq 1$

$$
\begin{array}{cl}
81^{x-9}=1 & \text { Test point } \\
81^{x-9}=81^{0} & \text { Let } x=0 \\
x-9=0 & 81^{x-9} \geq 1 \\
x=9 & 81^{-9} \geq 1 \\
& \text { FALSE }
\end{array}
$$

So solution must not include $x=0$
$\therefore[9, \infty[$

$\therefore[9, \infty[$

Inverse of Exponential Functions
To find the inverse of exponential functions, we will need logarithmic functions.

