Cosine Function Assignment

1. A class was asked "in which of the following intervals does the basic cosine function increase?" Four different answers were given & shown below. Which answer is correct? (4 pts)

A) $[0, \pi]$ C) $[\pi, 2\pi]$ B) $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ D) $\left[\frac{3\pi}{2}, \frac{5\pi}{2}\right]$

2. The following statements were made regarding the function $f(x) = 2\cos\left(x + \frac{\pi}{3}\right) - 1$. Which statement is correct? (Tip: Graph it!) (4 pts)

- A) It increases on $\left[\frac{\pi}{6}, \frac{2\pi}{3}\right]$ and decreases on $\left[\frac{2\pi}{3}, \frac{7\pi}{6}\right]$
- B) It decreases on $\left[\frac{\pi}{6}, \frac{2\pi}{3}\right]$ and increases on $\left[\frac{2\pi}{3}, \frac{7\pi}{6}\right]$
- C) It increases on $\left[\frac{-\pi}{3}, \frac{\pi}{6}\right]$ and decreases on $\left[\frac{5\pi}{3}, 2\pi\right]$
- D) It decreases on $\left[\frac{-\pi}{3}, \frac{\pi}{6}\right]$ and increases on $\left[\frac{5\pi}{3}, 2\pi\right]$
- 3. Which one of the following rules defines the function represented by the graph below?

(4 pts)

- A) $y = 2\sin\frac{1}{2}(x 2\pi)$ C) $y = 2\cos\frac{1}{2}(x \pi)$
- B) $y = 2\sin\frac{-1}{2}x$ D) $y = 2\cos\frac{1}{2}(x-3\pi)$

4. The piston in the motor of a lawn mower moves within a cylinder. The following graph represents the height of the piston, in centimetres, as a function of time in seconds.

Which expression should be used to determine the height of the piston in the cylinder?

(4 pts)

A)
$$f(x) = 3\sin\left(\frac{3}{40}x\right) + 3$$

B) $f(x) = 3\sin\left(\frac{80\pi}{3}\left(x - \frac{3}{80}\right)\right) + 3$
C) $f(x) = 3\cos\left(\frac{3}{40}x\right) + 3$
D) $f(x) = -3\cos\left(\frac{80\pi}{3}\left(x - \frac{9}{160}\right)\right) + 3$

5. Given the cosine function below, if the *h* parameter is $\frac{\pi}{4}$, state the rule of the function.

(4 pts)

6. Determine the zeros of the following function:

$$f(x) = 3\cos\left(2\left(x + \frac{\pi}{4}\right)\right) - 3$$

7. Given $f(x) = -0.5 \cos\left(\frac{\pi}{2}(x+2)\right) + 1$, determine when the $f(x) \ge 1$ over $x \in [0,5]$