Functions: Absolute Value Functions

(each question is worth 2 points)

1) Solve the following inequality: $-|2 x+4|+8 \leq 2$

$$
]-\infty,-5] \cup[1,+\infty[
$$

2) Given $f(x)=-2 x+6, g(x)=3|-3 x+27|-8$, and $h(x)=f(g(x))$ Determine the vertex of $h(x)$

$$
\text { Vertex: }(9,22)
$$

3) What are the zero(s) for the following function: $f(x)=4|-x+3|-7$

$$
x=\frac{5}{4} \text { and } x=\frac{19}{4}
$$

4) Given $g(x)=2|4 x+12|-3$, solve for $g(2)$

$$
g(2)=37
$$

5) Find the rule of an absolute value function has a vertex of $(4,7)$ and a y-intercept of -5

$$
f(x)=-3|x-4|+7
$$

6) Solve the following inequality: $3|x+2|+15 \geq 5|x+2|$

$$
\left[-\frac{19}{2}, \frac{11}{2}\right]
$$

7) Find the rule of an absolute value function that passes through the points $(-12,23),(-15.5,30)$, and $(6,23)$

$$
f(x)=2|x+3|+5
$$

8) Given $f(x)=3 \sqrt{-2 x+6}+3$ which of the following functions never intersects with $f(x)$?
A) $g(x)=2|3 x+6|+10$
B) $h(x)=2|3 x+6|-10$
C) $i(x)=-2|3 x+6|+10$
D) $j(x)=-2|3 x-6|+10$
9) Given $f(x)=a|b(x-h)|+k$, where $a>0, b<0, h>0, k<0$ Which of the following is NOT true:
A) The domain of the function is] $-\infty,+\infty$ [
B) The range of the function is $]-\infty, k]$
C) The function has 2 zeros
D) The function is increasing over [$h,+\infty$ [
