Piecewise Functions

Piecewise Functions Basics

A piecewise function is made up of several functions, defined over different intervals of the domain, creating "pieces".

- The graph of a piecewise function is determined by the different functions that are elements of the piecewise function
- Domain: varies (look at the function to determine)
- Range: varies (look at a sketch to determine)

Sketching a Piecewise Function

Sketch each piece of the piecewise function over the stated domain (it helps to determine the y values of the minimum and maximum x value, as well as any asymptotes or vertices)

0

Ex: Sketch the following piecewise function and determine its domain and range.

$$f(x) = \begin{cases} 4x - 8 & -\infty \le x \le 2\\ \sqrt{x - 2} & 2 \le x \le 11\\ \frac{4}{3}|14 - x| - 1 & 11 \le x \le 15 \end{cases}$$

$$y = 4x - 8$$

This is a line with an initial value of -8 and a slope of 4. The line begins at $x = -\infty$ The line must pass through the point (0 - 8)The endpoint of the line is when x = 2. Solve for y when x = 2

$$y = 4(2) - 8$$

 $y = 0$

The line ends at the point (2, 0)

$$y=\sqrt{x-2}$$

This is a square root function where a and b are both positive

The function begins at x = 2, so solve for y when x = 2

$$y = \sqrt{2 - 2}$$

The function begins at (2, 0)

The function ends at x = 11 so solve for y when x = 11 $y = \sqrt{11 - 2}$

$$= \sqrt{11} - 2$$

 $v = 3$

The function ends at (11, 3)

$$y = \frac{4}{3}|14 - x| - 1$$

This is an absolute value function where a is positive

The function has a vertex at (14, -1) which is within the domain, so that is a point on the graph.

The function begins at x = 11 so solve for y when x = 11

$$y = \frac{4}{3}|14 - 11| - 1$$

So the function begins at (11, 3) The function ends at x = 15 so solve for y when x = 15

$$y = \frac{4}{3}|14 - 15| - 1$$
$$y = \frac{1}{3}$$

Domain: $]-\infty, 15]$ Range: $]-\infty, 3]$

Solving Piecewise Functions

not a solution.

To solve for y given x, check the domain of each piece and use the correct rule.

To solve for x given y, solve using each piece of the function and then check the solution to see if the x value falls in the given domain for the piece used (a sketch can help).

Ex: Given the piecewise function below $f(x) = \begin{cases} 4x - 8 & -\infty \le x \le 2\\ \sqrt{x - 2} & 2 \le x < 11\\ \frac{4}{3}|14 - x| - 1 & 11 \le x \le 15 \end{cases}$ 0 a) Solve for f(8)We know x = 8 so we use $y = \sqrt{x - 2}$ $y = \sqrt{x - 2}$ $y = \sqrt{8-2}$ $y = \sqrt{6} = 2.4495$ b) Solve for x when y = 3Using $y = \frac{4}{3}|14 - x| - 1$ $y = \frac{4}{3}|14 - x| - 1$ $3 = \frac{4}{3}|14 - x| - 1$ Using y = 4x - 8Using $y = \sqrt{x-2}$ y = 4x - 8 $y = \sqrt{x - 2}$ $3 = \sqrt{x - 2}$ 3 = 4x - 811 = 4x9 = x - 2 $\frac{11}{4} = x$ 11 = x $4 = \frac{4}{3}|14 - x|$ x = 2.75But 11 is not within the 3 = |14 - x|domain for this piece, so it is But 2.75 is not within the 3 = 14 - x or - 3 = 14 - xnot a solution. domain for this piece, so it is

x = 11 or x = 17Only x = 11 is within the domain, so the solution is x = 11

2

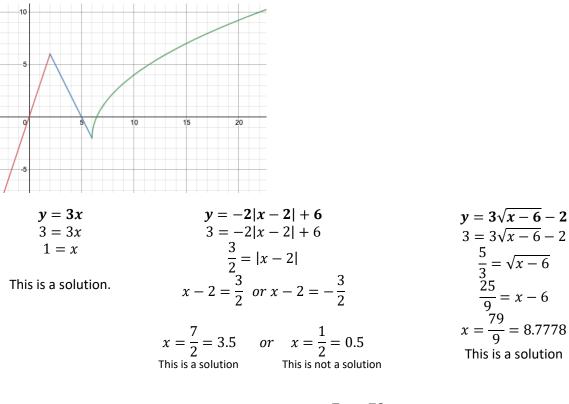
Solving Piecewise Inequalities

To solve an inequality: solve using each piece of the function and then check the solution to see if the x value falls in the given domain for the piece used (a sketch can help).

Ex: Given the piecewise function below, determine when $f(x) \ge 3$

$$f(x) = \begin{cases} 3x & -\infty \le x \le 2\\ -2|x-2|+6 & 2 \le x \le 6\\ 3\sqrt{x-6}-2 & 6 \le x \le \infty \end{cases}$$

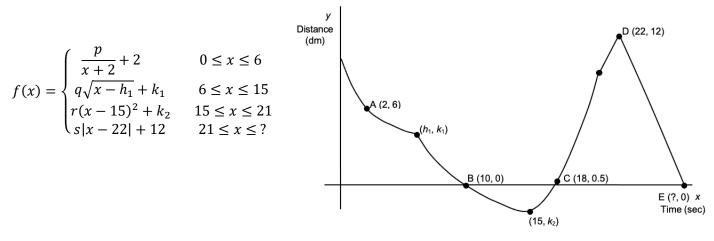
Sketch the function:



$$\therefore f(x) \geq 3 \text{ over } \left[1, \frac{7}{2}\right] \cup \left[\frac{79}{9}, +\infty\right]$$

Putting the Pieces Together

Calvin the chipmunk is being chased by his brother Isidore, according to the piecewise function shown below.



Isidore catches Calvin at point E. How long does it take for Isidore to catch Calvin?

Step 1: Determine p (using point A) **Step 3**: Determine q (using point B) **Step 6:** determine y when x = 21 $y = q\sqrt{x-6} + 4$ $0 = q\sqrt{10-6} + 4$ -4 = 2q q = -2 $y = -2\sqrt{x-6} + 4$ $y = \frac{p}{x + 2} + 2$ $y = \frac{5}{\underline{18}}(x - 15)^2 - 2$ $y = \frac{5}{18}(21 - 15)^2 - 2$ $6 = \frac{p}{2+2} + 2$ $y = \frac{5}{18}(6)^2 - 2$ $4 = \frac{p}{4}$ p = 16 $y = \frac{16}{x+2} + 2$ **Step 4**: Determine k_2 So the unlabeled point is (21, 8) $y = -2\sqrt{15-6} + 4$ $y = -2\sqrt{9} + 4$ y = -2Step 7:determine s y = s|x - 22| + 12**Step 2:** Determine (h_1, k_1) , which 8 = s|21 - 22| + 12is the vertex of the second **Step 5:** Determine r (using point C) -4 = s|-1| $v = r(x - 15)^2 - 2$ function, so $h_1 = 6$ -4 = s $0.5 = r(18 - 15)^2 - 2$ $2.5 = r(3)^2$ $r = \frac{2.5}{9} = \frac{5}{18}$ $y = \frac{16}{x+2} + 2$ **Step 8:** Solve for y = 00 = -4|x - 22| + 123 = |x - 22| $y = \frac{16}{6+2} + 2$ x - 22 = 3 or x - 22 = -3x = 25 or x = 19 $y = \frac{16}{8} + 2$ X = 25 is a solution (x = 19 is not) y = 4 $(h_1, k_1) = (6, 4)$

: It takes 25 seconds for Isidore to catch Calvin