Exponential Functions Practice Questions

Laws of Exponents

1) Write each of the following expressions as a single exponent with the same base.
a)

$$
\begin{gathered}
2^{3} \cdot 2^{6} \\
=2^{9}
\end{gathered}
$$

b)

$$
\left(9^{4}\right)^{2}
$$

c)

$$
\begin{gathered}
3^{0} \cdot 3^{1} \cdot 3^{5} \\
=3^{6}
\end{gathered}
$$

d)

$$
\begin{aligned}
& \left(4^{4}\right)^{\frac{1}{2}} \\
& =4^{2}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \left(\frac{1}{4^{3}}\right)^{8} \\
& =4^{-24}
\end{aligned}
$$

f)

$$
\left(\frac{3^{5}}{3^{2}}\right)^{-7}
$$

g)

$$
\begin{gathered}
6^{5} \cdot 6^{-5} \\
=6^{0}=1
\end{gathered}
$$

h)
$12\left(\frac{12^{-2}}{12}\right)^{3}$
$=12^{-8}$
2) Write each of the following algebraic expressions in the form of a single exponent with the same base.
a)

$$
\begin{gathered}
a^{2} \cdot a^{5} \\
=a^{7}
\end{gathered}
$$

b)

$$
\begin{gathered}
a\left(a^{3}\right)^{2} \\
=a^{7}
\end{gathered}
$$

c)

$$
\begin{gathered}
2^{a} \cdot 2^{2 a} \\
=2^{3 a}
\end{gathered}
$$

d)

$$
\begin{aligned}
& \frac{a^{5}}{a^{7}} \\
= & a^{-2}
\end{aligned}
$$

e)

$$
\begin{aligned}
& 3^{a} \cdot 3^{4} \\
& =3^{a+4}
\end{aligned}
$$

f)
$a^{b} \cdot a^{b+1}$
$=a^{2 b+1}$
g)

$$
a\left(\frac{a^{2}}{a^{0}}\right)
$$

$$
=a^{3}
$$

h)

$$
\begin{gathered}
a^{7} \cdot a^{-7} \\
=a^{0}=1
\end{gathered}
$$

3) For each of the following, find the value or values of x
a)

$$
\begin{aligned}
3^{x} & =27 \\
x & =3
\end{aligned}
$$

b)

$$
\begin{aligned}
x^{2} & =36 \\
x & =6
\end{aligned}
$$

c)

$$
\begin{aligned}
& 2^{5}=x \\
& x=32
\end{aligned}
$$

d)

$$
\begin{aligned}
x^{3} & =64 \\
x & =4
\end{aligned}
$$

e)

$$
\begin{aligned}
2^{x} & =16 \\
x & =4
\end{aligned}
$$

f)

$$
\begin{gathered}
7^{4}=x \\
x=2401
\end{gathered}
$$

4) Re-write each of the following using exponents
a)

$$
\begin{aligned}
& \sqrt{3} \\
= & 3^{1 / 2}
\end{aligned}
$$

b)
$\begin{aligned} & \sqrt[3]{9} \\ = & 9^{1 / 3}\end{aligned}$
c)

$$
\begin{aligned}
& \sqrt[5]{5^{2}} \\
= & 5^{2 / 5}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \sqrt{\frac{2^{3}}{3^{3}}} \\
= & \left(\frac{2}{3}\right)^{3 / 2}
\end{aligned}
$$

e)

$$
\begin{gathered}
\sqrt{5} \cdot \sqrt[3]{5^{-2}} \\
=5^{-1 / 6}
\end{gathered}
$$

f)

$$
\begin{aligned}
& \left(\frac{\sqrt[4]{8}}{\sqrt{8}}\right)^{-1} \\
& =8^{1 / 4}
\end{aligned}
$$

5) Simplify the following expressions
a)

$$
\begin{gathered}
(\sqrt[3]{a})^{3} \\
=a
\end{gathered}
$$

b)

$$
\begin{gathered}
b^{8} \div b^{2} \\
=b^{6}
\end{gathered}
$$

c)

$$
\begin{gathered}
\frac{12 \cdot \sqrt{3 e} \cdot(4 e)^{1 / 2}}{(-12 e)^{2}} \\
=12^{-\frac{1}{2}} e^{-1} \\
\text { or equivalent }
\end{gathered}
$$

d)

$$
\begin{gathered}
2 c^{1 / 3} \cdot 4 \sqrt[3]{c} \\
=8 c^{2 / 3}
\end{gathered}
$$

e)

$$
\begin{aligned}
& \frac{4^{2 d}}{2^{4 d}} \\
& =1
\end{aligned}
$$

6) For each case, find the value of x
a)

$$
\begin{gathered}
7^{2} \cdot 7^{3}=7^{x} \\
x=5
\end{gathered}
$$

b)

$$
\begin{gathered}
13^{-5} \cdot 13=13^{x} \\
x=-4
\end{gathered}
$$

c)

$$
\begin{gathered}
4^{x} \cdot 4^{2}=4^{8} \\
x=6
\end{gathered}
$$

d)

$$
\begin{gathered}
\left(5^{x}\right)^{2}=5^{1 / 2} \\
x=1 / 4
\end{gathered}
$$

e)

$$
\begin{gathered}
\left(\frac{2}{3}\right)^{x} \cdot\left(\frac{2}{3}\right)^{4}=\left(\frac{2}{3}\right)^{-5} \\
x=-9
\end{gathered}
$$

f)
$\left(2^{4}\right)^{x}=\frac{1}{2}$
$x=-1 / 4$

Exponential Functions: Basics and Sketching

7) Indicate which of the following situations calls for an exponential model
a) A city's population increases by 2.8% every year Yes
b) Filling a pool using a water source with a constant flow No
c) A bacteria's population triples every 30 minutes Yes
d) The value of an investment earning 1.2\% interest every year Yes
8) Complete the following table below

Rule	Domain	Range	Initial Value	Variation	Asymptote
$f(x)=3\left(\frac{1}{5}\right)^{x}$	$]-\infty, \infty[$	$] 0, \infty[$	1	Decreasing over domain	$y=0$
$g(x)=2.5^{x}$	$]-\infty, \infty[$	$] 0, \infty[$	1	Increasing over domain	$y=0$
$h(x)=3(5)^{x-3}+1$	$]-\infty, \infty[$	$] 1, \infty[$	1.024	Increasing over domain	$y=1$
$i(x)=4(0.3)^{x-4}+2$	$]-\infty, \infty[$	$] 2, \infty[$	495.8271	Decreasing over domain	$y=2$
$j(x)=2.5(1.01)^{12 x}$	$]-\infty, \infty[$	$] 0, \infty[$	1	Increasing over domain	$y=0$
$k(x)=1000(0.95)^{x / 6}$	$]-\infty, \infty[$	$] 0, \infty[$	1	Increasing over domain	$y=0$

9) For each case, indicate whether the function is increasing or decreasing
a)
b)
$f(x)=2(0.2)^{x}$
Decreasing
$f(x)=0.5(3)^{x-4}$
increasing
c)
$f(x)=38\left(\frac{1}{5}\right)^{3-x}+1$
increasing
d)
$\quad f(x)=-7(0.3)^{x}$
increasing
10) Sketch each of the functions below
a) $f(x)=0.5^{x}$
b) $g(x)=3^{x}$
c) $h(x)=5^{x}$

a) Whether it represents growth or decay
b) The domain and range
c) The y-intercept
d) $f(1)$ and $f(-1)$
e) The equation of the asymptote
a) $f(x)=0.25^{x}$
b)
$g(x)=\left(\frac{1}{2}\right)^{x}$
Decay
D: $]-\infty, \infty[$
R: $] 0, \infty[$
y-int: 1
$f(1)=0.5$
$f(-1)=2$
Asymptote:

$$
y=0
$$

$y=0$
$f(1)=0.9$
$f(-1)=10 / 9$
c) $h(x)=0.9^{x}$ Decay

D: $]-\infty, \infty[$
R:]0, ∞ [
y-int: 1
d)
$i(x)=1.5^{x}$
Growth

D: $]-\infty, \infty[$
R: $] 0, \infty[$
y-int: 1
$f(1)=1.5$
$f(-1)=2 / 3$
Asymptote:

$$
y=0
$$

Asymptote:

$$
y=0
$$

e)
$j(x)=4^{x}$
Growth
D:] $-\infty, \infty[$
R:] $0, \infty$ [
y-int: 1
$f(1)=4$
$f(-1)=0.25$
Asymptote:
$y=0$
12) Sketch the following functions
a) $f(x)=-(6)^{2(x-1)}+1$
b) $g(x)=-2\left(\frac{1}{3}\right)^{-3 x+12}-5$
c) $h(x)=0.25(0.5)^{2 x+8}$

Exponential Functions: Finding the Rule from Words

13) An individual invests $\$ 5400$ in a guaranteed investment certificate with an annual interest rate of 3.6%.

$$
y=5400(1.036)^{x}
$$

14) The value of an investment is expected to increase by 0.5% every 4 months on a $\$ 500$ initial investment.

$$
y=500(1.005)^{x}
$$

15) Each year, the frog population of a small wooded area decreases by 5%. The wooded area currently has 2000 frogs.

$$
y=2000(0.95)^{x}
$$

Exponential Functions: Finding the Rule from Points

16) Determine the rule of the exponential function in the form $f(x)=y=a c^{x}$ given that it passes through the two points given.
a) $(1,24)$ and $(4,5184)$

$$
y=4(6)^{x}
$$

b) $(2,10.125)$ and $(-1,2)$

$$
y=3.434(1.7171)^{x}
$$

c) $(4,-81)$ and $(7,-2187)$

$$
y=-1(3)^{x}
$$

d) $(-3,16)$ and $(2,0.5)$

$$
y=2(0.5)^{x}
$$

17) Determine the rule of an exponential function passing through the points $(0,4)$ and $(1,8)$ with an asymptote at $y=2$

$$
y=2(3)^{x}+2
$$

18) Determine the rule of an exponential function passing through the points $(1,3)$ and $(0,23)$ with an asymptote at $y=-2$

$$
y=25(0.2)^{x}-2
$$

19) Determine the rule of an exponential function passing through the points $(0,-24)$ and $(1,-4)$ with an asymptote at $y=1$

$$
y=-25(0.2)^{x}+1
$$

20) Determine the rule of the functions shown in the graphs below.
a)

$$
y=2(0.5)^{x}+3
$$

b)

$$
y=-3(2)^{x}-2
$$

Exponential Functions: Solving Equalities

21) Find the zeros of the functions given below
a)

$$
\begin{gathered}
f(x)=3(2)^{x-3}-96 \\
x=8
\end{gathered}
$$

b)

$$
g(x)=10-15\left(\frac{2}{3}\right)^{x-2}
$$

$$
x=3
$$

c)

$$
\begin{gathered}
h(x)=7.5(6)^{x}+6 \\
\text { no solution }
\end{gathered}
$$

d)

$$
\begin{gathered}
i(x)=0.2(0.85)^{x-5}-0.2 \\
x=2
\end{gathered}
$$

22) Solve each of the following equations algebraically
a)

$$
\begin{gathered}
5^{6-x}=25^{2 x-13} \\
x=6.4
\end{gathered}
$$

b)

$$
\begin{gathered}
\left(\frac{1}{2}\right)^{x}=4^{10} \\
x=-20
\end{gathered}
$$

c)

$$
\begin{gathered}
\sqrt{2}^{x+1}=8^{-3 x} \\
x=-\frac{1}{19}
\end{gathered}
$$

Exponential Functions: Solving Inequalities

23) Given functions f and g , where $f(x)=2\left(3^{-2 x}-5\right)$ and $g(x)=2\left(\frac{1}{9}\right)^{4 x}-10$ Determine the values for which:
a) $f(x)=g(x) \quad x=0$
b) $f(x)>g(x) \quad] 0, \infty[$
c) $f(x)<g(x)]-\infty, 0[$
24) Solve the following inequalities
a) b) $25^{x}>1025$
Cannot solve unless you use guess and check
$2^{x+1}>256$
] $7, \infty[$
$]-\infty, 6]$
]2.1537, ∞ [
