Exponential Functions Practice Questions

Laws of Exponents

1) Write each of the following expressions as a single exponent with the same base.

2) Write each of the following algebraic expressions in the form of a single exponent with the same base.

	b)	c)	
$3^{x} = 27$	$x^2 = 36$	2 ⁵ =	= <i>x</i>
x = 3	x = 6	x =	32

d)

a)

e)

$$x^{3} = 64$$

 $x = 4$
e)
 $2^{x} = 16$
f)
 $7^{4} = x$
 $x = 2401$

4) Re-write each of the following using exponents

c) b) $\sqrt[3]{9}$ = 9^{1/3} $\sqrt{3} = 3^{1/2}$ $\sqrt[5]{5^2}$ = 5^{2/5}

d)

$$\sqrt{\frac{2^3}{3^3}}$$
 $\sqrt{5} \cdot \sqrt[3]{5^{-2}}$
 $= 5^{-1/6}$
 $= \left(\frac{2}{3}\right)^{3/2}$

a)

b)

$$(\sqrt[3]{a})^{3}$$

 $= a$
 b^{6}
c)
 $\frac{12 \cdot \sqrt{3e} \cdot (4e)^{1/2}}{(-12e)^{2}}$
 $= 12^{-\frac{1}{2}e^{-1}}$
or equivalent

d)		e)	
	$2c^{1/3} \cdot 4\sqrt[3]{c}$		4 ^{2d}
	$= 8c^{2/3}$		2 ⁴ d
			= 1

6) For each case, find the value of x
a) b) c)

$$7^2 \cdot 7^3 = 7^x$$
 $13^{-5} \cdot 13 = 13^x$ $4^x \cdot 4^2 = 4^8$
 $x = 5$ $x = -4$ $x = 6$

d)

$$(5^{x})^{2} = 5^{1/2}$$

 $x = 1/4$
e)
 $\left(\frac{2}{3}\right)^{x} \cdot \left(\frac{2}{3}\right)^{4} = \left(\frac{2}{3}\right)^{-5}$
 $x = -9$
f)
 $(2^{4})^{x} = \frac{1}{2}$
 $x = -1/4$

 $\left(\frac{\sqrt[4]{8}}{\sqrt{8}}\right)^{-1} = \frac{8^{1/4}}{8}$

Exponential Functions: Basics and Sketching

7) Indicate which of the following situations calls for an exponential model

- a) A city's population increases by 2.8% every year Yes
- b) Filling a pool using a water source with a constant flow No
- c) A bacteria's population triples every 30 minutes Yes
- d) The value of an investment earning 1.2% interest every year Yes

Rule	Domain	Range	Initial Value	Variation	Asymptote
$f(x) = 3\left(\frac{1}{5}\right)^x$]—∞,∞[]0, ∞[1	Decreasing over	y = 0
				domain	
$g(x) = 2.5^x$]−∞,∞[]0,∞[1	Increasing	y = 0
				over	
				domain	
$h(x) = 3(5)^{x-3} + 1$]−∞,∞[]1,∞[1.024	Increasing	<i>y</i> = 1
				over	
				domain	
$i(x) = 4(0.3)^{x-4} + 2$]−∞,∞[]2,∞[495.8271	Decreasing	y = 2
				over	
				domain	
$j(x) = 2.5(1.01)^{12x}$]−∞,∞[]0,∞[1	Increasing	y = 0
				over	
				domain	
$k(x) = 1000(0.9\overline{5})^{x/6}$]−∞,∞[]0,∞[1	Increasing	y = 0
				over	
				domain	

8) Complete the following table below

9) For each case, indicate whether the function is increasing or decreasing

a) b) c) d)
$$f(x) = 2(0.2)^x$$
 $f(x) = 0.5(3)^{x-4}$ $f(x) = 38\left(\frac{1}{5}\right)^{3-x} + 1$ $f(x) = -7(0.3)^x$ increasing

increasing

10) Sketch each of the functions below a) $f(x) = 0.5^x$

b) $g(x) = 3^x$

c)
$$h(x) = 5^x$$

11) For each of the following rules, determine

- a) Whether it represents growth or decay
- b) The domain and range
- c) The y-intercept
- d) f(1) and f(-1)
- e) The equation of the asymptote

a)	b)	c)	d)	e)
$f(x) = 0.25^x$	$(1)^x$	$h(x) = 0.9^x$	$i(x) = 1.5^x$	$j(x) = 4^x$
	$g(x) = \left(\frac{1}{2}\right)$	Decay	Growth	Growth
Decay	Decay			
		D:]−∞,∞[D:]−∞,∞[D:]−∞,∞[
D:]−∞,∞[D:]−∞,∞[R:]0,∞[R:]0,∞[R:]0,∞[
R:]0,∞[R:]0,∞[
		y-int: 1	y-int: 1	y-int: 1
y-int: 1	y-int: 1			
		f(1) = 0.9	f(1) = 1.5	f(1) = 4
f(1) = 0.25	f(1) = 0.5	f(-1) = 10/9	f(-1) = 2/3	f(-1) = 0.25
f(-1) = 4	f(-1) = 2			
		Asymptote:	Asymptote:	Asymptote:
Asymptote:	Asymptote:	y = 0	y = 0	y = 0
y = 0	y = 0			

12) Sketch the following functions
a)
$$f(x) = -(6)^{2(x-1)} + 1$$

b)
$$g(x) = -2\left(\frac{1}{3}\right)^{-3x+12} - 5$$

c)
$$h(x) = 0.25(0.5)^{2x+8}$$

Exponential Functions: Finding the Rule from Words

13) An individual invests \$5 400 in a guaranteed investment certificate with an annual interest rate of 3.6%.

$$y = 5400(1.036)^x$$

14) The value of an investment is expected to increase by 0.5% every 4 months on a \$500 initial investment.

 $y = 500(1.005)^x$

15) Each year, the frog population of a small wooded area decreases by 5%. The wooded area currently has 2000 frogs.

$y = 2000(0.95)^x$

Exponential Functions: Finding the Rule from Points

16) Determine the rule of the exponential function in the form $f(x) = y = ac^x$ given that it passes through the two points given.

a) (1,24) and (4,5184)

$$y = 4(6)^{x}$$

b) (2, 10.125) and (-1, 2)

$$y = 3.434(1.7171)^x$$

c) (4,−81) and (7,−2187)

 $y = -1(3)^x$

d) (-3, 16) and (2, 0.5)

$$y = 2(0.5)^x$$

17) Determine the rule of an exponential function passing through the points (0, 4) and (1, 8) with an asymptote at y = 2

$$y = 2(3)^x + 2$$

18) Determine the rule of an exponential function passing through the points (1,3) and (0,23) with an asymptote at y = -2

$$y = 25(0.2)^x - 2$$

19) Determine the rule of an exponential function passing through the points (0, -24) and (1, -4) with an asymptote at y = 1

$$y = -25(0.2)^x + 1$$

 $y = -3(2)^{x} - 2$

20) Determine the rule of the functions shown in the graphs below.

Exponential Functions: Solving Equalities

21) Find the zeros of the functions given below

b)

$$f(x) = 3(2)^{x-3} - 96$$

 $x = 8$
 $x = 3$

c)

a)

d)

$$h(x) = 7.5(6)^x + 6$$

$$i(x) = 0.2(0.85)^{x-5} - 0.2$$

 $x = 2$

22) Solve each of the following equations algebraically

a)

$$5^{6-x} = 25^{2x-13}$$

 $x = 6.4$
b)
 $\left(\frac{1}{2}\right)^{x} = 4^{10}$
 $x = -20$
c)
 $\sqrt{2}^{x+1} = 8^{-3x}$
 $x = -\frac{1}{19}$

Exponential Functions: Solving Inequalities

23) Given functions f and g, where $f(x) = 2(3^{-2x} - 5)$ and $g(x) = 2\left(\frac{1}{9}\right)^{4x} - 10$ Determine the values for which:

- a) $f(x) = g(x) \ x = 0$
- b) f(x) > g(x)]0, ∞ [
- c) $f(x) < g(x)]-\infty, 0[$

24) Solve the following inequa	lities	
a)	b)	c)
$25^x > 1025$	$2^{x+1} > 256$	$7^{x-2} \le 2401$
Cannot solve unless you use		
guess and check]7,∞[]−∞,6]

]2.1537,∞[