Reviewing Radicals

First the vocabulary:

$$n\sqrt{a}$$
 $n = index$
 $a = radicand$
 $\sqrt{a} = radical$

*When the index is 2, we don't bother writing it.

Finding the radical of a number is like applying a fractional exponent to base, where the base of the fraction is equal to the index of the radical.

For example: $\sqrt[2]{16} = 16^{\frac{1}{2}} = 4$ $\sqrt[3]{8} = 8^{\frac{1}{3}} = 2$

Of course, this works both ways!

Try it:	
1) $81^{\frac{1}{4}} =$	2) $125^{-\frac{1}{3}} =$
$\sqrt[4]{81} =$	<u> </u>
3	$125^{\frac{1}{3}}$
	1 =
	∛125
	1
	5

Solving

<u>Recall</u>: To solve $x^2 = 36$, we would square root both sides and get $x = \pm 6$.

$$x^{2} = 36$$
$$\sqrt{x^{2}} = \sqrt{36}$$
$$x = \pm 6$$

The same theory applies when you have a different exponent.

∴ To solve for a base:

To Solve This:	Do this to both sides:
x ²	$\sqrt{-} or \frac{1}{2}$
x ³	$\sqrt[3]{0r} \frac{1}{3}$
x ⁴	$\sqrt[4]{0r}$ or $\frac{1}{4}$
÷	÷

To solve for an exponent:

Try to re-write the equation so that you have the same base on both sides (guess and check – for now).

 Rule:
 If $c^u = c^v$, then u = v.

 Ex:
 1) $2^x = 8$ 2) $4^x = 16$
 $2^x = 2^3$ $4^x = 4^2$

 x = 3 x = 2