Reviewing Radicals

First the vocabulary:

$$
\sqrt[n]{a}
$$

$$
\begin{aligned}
& n=\text { index } \\
& a=\text { radicand } \\
& \sqrt{ }=\text { radical }
\end{aligned}
$$

*When the index is 2 , we don't bother writing it.
Finding the radical of a number is like applying a fractional exponent to base, where the base of the fraction is equal to the index of the radical.

For example:
$\sqrt[2]{16}=16^{\frac{1}{2}}=4$
$\sqrt[3]{8}=8^{\frac{1}{3}}=2$

Of course, this works both ways!
Try it:

1) $81^{\frac{1}{4}}=$
$\sqrt[4]{81}=$
3
2) $125^{-\frac{1}{3}}=$
$\frac{1}{1}=$ $125^{\frac{1}{3}}$
$\frac{1}{\sqrt[3]{125}}=$
$\frac{1}{5}$

Solving
Recall:
To solve $x^{2}=36$, we would square root both sides and get $x= \pm 6$.
$x^{2}=36$
$\sqrt{x^{2}}=\sqrt{36}$
$x= \pm 6$
The same theory applies when you have a different exponent.
\therefore To solve for a base:

To Solve This:	Do this to both sides:
x^{2}	$\sqrt{\text { }}$ or $\quad \frac{1}{2}$
x^{3}	$\sqrt[3]{ }$ or $\frac{1}{3}$
x^{4}	$\sqrt[4]{ }$ or $\frac{1}{4}$
\vdots	\vdots

To solve for an exponent:
Try to re-write the equation so that you have the same base on both sides (guess and check - for now).

Rule:
If $c^{u}=c^{v}$, then $u=v$.

Ex:

1) $2^{x}=8$
$2^{x}=2^{3}$
$x=3$
2) $4^{x}=16$
$4^{x}=4^{2}$
$x=2$
