Square Root Functions

Properties of radicals

Property	Example
$\sqrt[n]{a^m} = a^{m/n}$	$\sqrt[5]{a^2} = a^{2/5}$
$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$	$\sqrt{7} \cdot \sqrt{5} = \sqrt{35}$
$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$	$\frac{\sqrt{6}}{\sqrt{2}} = \sqrt{3}$
$m\sqrt{a} \cdot n\sqrt{b} = mn\sqrt{ab}$	$2\sqrt{3} \cdot 4\sqrt{5} = 8\sqrt{15}$
$\frac{m\sqrt{ab}}{n\sqrt{b}} = \frac{m\sqrt{a}}{n}$	$\frac{5\sqrt{3\cdot 4}}{2\sqrt{4}} = \frac{5\sqrt{3}}{2}$

Breaking apart radicals

 $\mathsf{Ex}: \sqrt{48} = \sqrt{4 \cdot 12} = \sqrt{4} \cdot \sqrt{12} = 2\sqrt{12} = 2\sqrt{4 \cdot 3} = 2\sqrt{4} \cdot \sqrt{3} = 2 \cdot 2\sqrt{3} = 4\sqrt{3}$

Ex:
$$\frac{\sqrt{60}}{\sqrt{3}} = \sqrt{\frac{60}{3}} = \sqrt{20} = \sqrt{4 \cdot 5} = \sqrt{4} \cdot \sqrt{5} = 2\sqrt{5}$$

Rationalizing (getting rid of a radical in the denominator of a fraction)

$$\frac{a}{\sqrt{b}} = \frac{a}{\sqrt{b}} \cdot \frac{\sqrt{b}}{\sqrt{b}} = \frac{a\sqrt{b}}{b}$$

$$\frac{a}{\sqrt{b} + \sqrt{c}} = \frac{a}{\sqrt{b} + \sqrt{c}} \cdot \frac{\sqrt{b} - \sqrt{c}}{\sqrt{b} - \sqrt{c}} = \frac{a\sqrt{b} - a\sqrt{c}}{b - c}$$
FOIL
$$(\sqrt{b} + \sqrt{c})(\sqrt{b} - \sqrt{c})$$

$$b - \sqrt{b}\sqrt{c} + \sqrt{b}\sqrt{c} - c$$

$$b - c$$

Square Root Function

A square root function is the inverse of a quadratic.

It is a semi-parabolic curve.

Rule

$$y = a\sqrt{b(x-h)} + k$$
 vertex : (h. k)

or we can remove the "b" term using properties of radicals and have

$$y = a\sqrt{\pm(x-h)} + k$$

Ex: Remove the "b" term from the rule: $y = 2\sqrt{-9x + 27} + 1$
$$y = 2\sqrt{-9(x-3)} + 1$$

$$y = 2\sqrt{9}\sqrt{-(x-3)} + 1$$

$$y = 2 \cdot 3\sqrt{-(x-3)} + 1$$

$$y = 6\sqrt{-(x-3)} + 1$$

There are 4 possibilities for the direction and variation of square root functions.

If:

- a < 0, then range is $]-\infty, k]$
- a > 0, then range is $[k, +\infty)$
- b < 0, then domain is $]-\infty, h]$
- b > 0, then domain is $[h, +\infty)$

Sketches are useful to give us a general idea of the vertex of a function and its direction.

Sketch the following functions:

Finding the Rule

There are 3 steps to finding the rule of a square root function.

1) Decide which rule to use:

$$y = a\sqrt{(x-h)} + k \text{ or } y = a\sqrt{-(x-h)} + k$$

In choosing the rule, sketch the function to determine its direction.

- 2) Plug in the vertex for h and k
- 3) Plug in a given point (x, y) and solve for a

Ex: Find the rule of a square root function with a vertex at (3, -2) and passing through the point (-1, 2)

Sketch the function to determine the sign of b.

Ex: Find the rule of a square root function with a vertex at (5, 12) and passing through the point (30, 0)

Sketch the function to determine the sign of b.

Given the sketch, we know a < 0 and b > 0So use the rule $y = a\sqrt{(x - h)} + k$ Plug in h and k: $y = a\sqrt{(x - 5)} + 12$ Plug in x and y: $0 = a\sqrt{(30 - 5)} + 12$ Solve for a $-12 = a\sqrt{25}$ -12 = 5a

$$-\frac{12}{5} = a$$

$$\therefore y = -\frac{12}{5}\sqrt{(x-5)} + 12$$

Graphing a Square Root Function

There are 5 steps to graphing a square root function, given the rule.

- 1) Determine the vertex
- 2) Determine the signs of a and b (and thus the direction of the function)
- 3) Create a table of values for additional points. (Pick a few x values higher than h if b is positive and lower than h if b is negative.)
- 4) Solve for the corresponding y values
- 5) Plot points and connect the dots

Ex: Graph the function $y = -2\sqrt{-3x + 12} - 2$

$$y = -2\sqrt{-3x + 12} - 2$$

$$y = -2\sqrt{-3(x - 4)} - 2$$
Therefore, vertex: (4, -2) $a < 0$ $b < 0$

$$x$$
 y

$$4$$
 -2
 1 -8
 -1 -9.75
Therefore, vertex: (4, -2) $a < 0$ $b < 0$

$$y = -2\sqrt{-3(x - 4)} - 2$$
 $y = -2\sqrt{-3(x - 4)} - 2$
 $y = -2\sqrt{-3(1 - 4)} - 2$ $y = -2\sqrt{-3(-1 - 4)} - 2$
 $y = -2\sqrt{9} - 2$ $y = -2\sqrt{15} - 2$
 $y = -9.75$

Solving Square Root Functions

To solve for y, plug in x and solve (remember to only take the positive root).

To solve for x:

- 1) Isolate the radical
- 2) State domain restrictions (the value under the radical cannot be negative)
- 3) Solve for x
- 4) Check for extraneous answers (plug solution into equation)

Ex: Given $y = 2\sqrt{2x-4}$, solve for y when x = 4

$$y = 2\sqrt{2x - 4}$$
$$y = 2\sqrt{2(4) - 4}$$
$$y = 2\sqrt{4}$$
$$y = 4$$

Ex: Given $y = 2\sqrt{2x-4}$, solve for x when y = 0

$y = 2\sqrt{2x - 4}$	Domain Restrictions
$0 = 2\sqrt{2x - 4}$	$2x - 4 \ge 0$
$0 = \sqrt{2x - 4}$	$2x \ge 4$
0 = 2x - 4	$x \ge 2$
4 = 2x	
2 = x	

Check for extraneous answers

$$y = 2\sqrt{2x - 4}$$
$$0 = 2\sqrt{2(2) - 4}$$
$$0 = 2\sqrt{0}$$
$$0 = 0$$
True

Solution: x = 2

Ex: Given $y = 2\sqrt{x-3}$, solve for x when y = 4

$$4 = 2\sqrt{x-3}$$
Domain Restrictions $2 = \sqrt{x-3}$ $x - 3 \ge 0$ $4 = x - 3$ $x \ge 3$ $7 = x$ $x \ge 3$

Check for extraneous answers

$$4 = 2\sqrt{7-3}$$
$$4 = 2\sqrt{4}$$
$$4 = 4$$
True

Solution: x = 7

Ex: Given $y = 2\sqrt{x+3} + 2$, solve for the zero of the function

$$0 = 2\sqrt{x+3} + 2$$

$$-2 = 2\sqrt{x+3}$$

$$-1 = \sqrt{x+3}$$

No Solution

Note: There is no solution because when working with square root functions, we always take the positive root. Anytime we have $\sqrt{} = -$, there will be no solution

Ex: Determine when the following two functions intersect

$$f(x) = 2\sqrt{x+4} - 1 \text{ and } g(x) = x$$

$$x = 2\sqrt{x+4} - 1$$

$$x+1 = 2\sqrt{x+4}$$

$$\frac{x+1}{2} = \sqrt{x+4}$$

$$\left(\frac{x+1}{2}\right)^2 = x+4$$

$$\frac{(x+1)(x+1)}{(2)(2)} = x+4$$

$$\frac{x^2+2x+1}{4} = x+4$$

$$x^2+2x+1 = 4(x+4)$$

$$x^2+2x+1 = 4x+16$$

$$x^2-2x-15 = 0$$

$$(x-5)(x+3) = 0$$

$$x = 5 \text{ and } x = -3$$

Domain Restrictions

$$\begin{array}{c} x+4 \ge 0 \\ x \ge -4 \end{array}$$

Both answers are consistent with the restrictions

Check for extraneous answers

$$x = 2\sqrt{x+4} - 1$$

$$5 = 2\sqrt{5+4} - 1$$

$$5 = 6 - 1$$

$$5 = 5$$

True
hen $x = 5$ $y = x$ so $y = 5$ intersection: (5)

When x = 5, y = x so y = 5 intersection: (5, 5)

$$x = 2\sqrt{x+4} - 1$$

-3 = 2\sqrt{-3+4} - 1
-3 = 2 - 1
-3 = 1
False

 \therefore The functions intersect at the point (5,5)

Solving Square Root Inequalities

To solve a square root inequality:

- 1) Isolate the radical
- 2) State the domain restrictions
- 3) Solve (remember to change the inequality if you multiply or divide by a negative number)
- 4) Check against domain restrictions
- 5) State solution

Ex: Solve $2\sqrt{2x+4} - 6 > 2$

$$2\sqrt{2x + 4} - 6 > 2$$

$$2\sqrt{2x + 4} > 8$$

$$\sqrt{2x + 4} > 4$$

$$2x + 4 > 16$$

$$2x > 12$$

$$x > 6$$

Domain Restrictions

$$2x + 4 \ge 0$$

$$2x \ge -4$$

$$x \ge -2$$

Check against domain restrictions

The solution is x > 6. That is consistent with the domain restrictions, and the domain offers no additional restrictions.

Solution: x > 6 or $2\sqrt{2x + 4} - 6 > 2$ over $]6, +\infty[$

Ex: Solve $-2\sqrt{x-3} + 4 > 0$

$$-2\sqrt{x-3} + 4 > 0$$

$$-2\sqrt{x-3} > -4$$

$$\sqrt{x-3} < 2$$

$$x-3 < 4$$

$$x < 7$$

Domain Restrictions
$x-3 \ge 0$
$x \ge 3$

Check against domain restrictions

This domain offers us a lower limit of 3, and our solution gives us an upper limit of 7.

Solution: $3 \le x < 7$ or $-2\sqrt{x-3} + 4 > 0$ over [3,7[Ex: Solve $2\sqrt{3(x-4)} + 2 \ge 1$

$$2\sqrt{3(x-4)} + 2 \ge 1$$

$$2\sqrt{3(x-4)} \ge -1$$

$$\sqrt{3(x-4)} \ge -0.5$$

We know the term under the radical cannot equal a negative number, so we either have no solution or a solution that exists everywhere the function is defined.

Check a sketch to determine solution

From the sketch we can see that the function is always greater than or equal to 1 (but limited to the domain of the function)

Solution: $4 \le x$ or $2\sqrt{3(x-4)} + 2 \ge 1$ over $[4, +\infty[$

Finding the Inverse of a Square Root Function

We find the inverse of a square root function in the same way we find the inverse of any function.

Important note: we can think of a square root function as half of a sideways parabola. Because of this, square root functions and squared functions (parabolas) are not the exact inverse of each other – there are domain/range restrictions.

Recall: the domain of a function becomes the range of its inverse and the range of a function becomes the domain of its inverse.

Ex: Find the inverse of $f(x) = 2(x-4)^2 - 3$, sketch both, and state the domain and range for both.

Note that the inverse is a relation (not a function) because we have to consider the positive and negative solutions when taking the square root, which is not the case in a square root function.

Ex: Find the inverse of $y = \sqrt{\frac{x+3}{2}} + 4$, sketch both, and state the domain and range for both.

$$y = \sqrt{\frac{x+3}{2}} + 4$$
 Domain:]-3, + ∞ [Range: [4, + ∞ [

Inverse

$$x = \sqrt{\frac{y+3}{2}} + 4$$

$$y = 2(x-4)^2 - 3 \text{ so } f^{-1}(x) = 2(x-4)^2 - 3$$

Domain: $[4, +\infty[$ Range: $]-3, +\infty[$

Note the restricted domain, which gives us only half of a parabola. This is because when talking about square root functions, we only take the positive root, by definition.