Square Root Functions

Properties of radicals

Property	Example
$\sqrt[n]{a^{m}}=a^{m / n}$	$\sqrt[5]{a^{2}}=a^{2 / 5}$
$\sqrt{a} \cdot \sqrt{b}=\sqrt{a b}$	$\sqrt{7} \cdot \sqrt{5}=\sqrt{35}$
$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$	$\frac{\sqrt{6}}{\sqrt{2}}=\sqrt{3}$
$m \sqrt{a} \cdot n \sqrt{b}=m n \sqrt{a b}$	$2 \sqrt{3} \cdot 4 \sqrt{5}=8 \sqrt{15}$
$\frac{m \sqrt{a b}}{n \sqrt{b}}=\frac{m \sqrt{a}}{n}$	$\frac{5 \sqrt{3 \cdot 4}}{2 \sqrt{4}}=\frac{5 \sqrt{3}}{2}$

Breaking apart radicals

Ex: $\sqrt{48}=\sqrt{4 \cdot 12}=\sqrt{4} \cdot \sqrt{12}=2 \sqrt{12}=2 \sqrt{4 \cdot 3}=2 \sqrt{4} \cdot \sqrt{3}=2 \cdot 2 \sqrt{3}=4 \sqrt{3}$
$\operatorname{Ex}: \frac{\sqrt{60}}{\sqrt{3}}=\sqrt{\frac{60}{3}}=\sqrt{20}=\sqrt{4 \cdot 5}=\sqrt{4} \cdot \sqrt{5}=2 \sqrt{5}$

Rationalizing (getting rid of a radical in the denominator of a fraction)

$$
\begin{gathered}
\frac{a}{\sqrt{b}}=\frac{a}{\sqrt{b}} \cdot \frac{\sqrt{b}}{\sqrt{b}}=\frac{a \sqrt{b}}{b} \\
\frac{a}{\sqrt{b}+\sqrt{c}}=\frac{a}{\sqrt{b}+\sqrt{c}} \cdot \frac{\sqrt{b}-\sqrt{c}}{\sqrt{b}-\sqrt{c}}=\frac{a \sqrt{b}-a \sqrt{c}}{b-c} \\
\frac{\text { FOIL }}{(\sqrt{b}+\sqrt{c})(\sqrt{b}-\sqrt{c})} \\
b-\sqrt{b} \sqrt{c}+\sqrt{b} \sqrt{c}-c \\
b-c
\end{gathered}
$$

Square Root Function

A square root function is the inverse of a quadratic.
It is a semi-parabolic curve.

\[

\] or we can remove the " b " term using properties of radicals and have

$$
y=a \sqrt{ \pm(x-h)}+k
$$

Ex: Remove the "b" term from the rule: $y=2 \sqrt{-9 x+27}+1$

$$
\begin{aligned}
& y=2 \sqrt{-9(x-3)}+1 \\
& y=2 \sqrt{9} \sqrt{-(x-3)}+1 \\
& y=2 \cdot 3 \sqrt{-(x-3)}+1 \\
& y=6 \sqrt{-(x-3)}+1
\end{aligned}
$$

There are 4 possibilities for the direction and variation of square root functions.

If:

- $\quad a<0$, then range is $]-\infty, k]$
- $\quad a>0$, then range is $[k,+\infty[$
- $b<0$, then domain is $]-\infty, h]$
- $\quad b>0$, then domain is $[h,+\infty$ [

Sketches are useful to give us a general idea of the vertex of a function and its direction.
Sketch the following functions:

$$
\begin{aligned}
& f(x)=\sqrt{x} \quad \text { vertex: }(0,0) \quad a>0 \quad b>0 \\
& g(x)=3 \sqrt{-2(x-4)}-5 \quad \text { vertex: }(4,-5) \quad a>0 \quad b<0 \\
& h(x)=\sqrt{x+3}+4 \quad \text { vertex: }(-3,4) \quad a>0 \quad b>0 \\
& i(x)=3 \sqrt{2 x-8}-5 \\
& =3 \sqrt{2(x-4)}-5 \quad \text { vertex: }(4,-5) \quad a>0 \quad b>0
\end{aligned}
$$

Finding the Rule

There are 3 steps to finding the rule of a square root function.

1) Decide which rule to use:

$$
y=a \sqrt{(x-h)}+k \text { or } y=a \sqrt{-(x-h)}+k
$$

In choosing the rule, sketch the function to determine its direction.
2) Plug in the vertex for h and k
3) Plug in a given point (x, y) and solve for a

Ex: Find the rule of a square root function with a vertex at $(3,-2)$ and passing through the point $(-1,2)$ Sketch the function to determine the sign of b.

Given the sketch, we know $a>0$ and $b<0$
So use the rule $y=a \sqrt{-(x-h)}+k$
Plug in h and k: $y=a \sqrt{-(x-3)}-2$
Plug in x and $y: 2=a \sqrt{-(-1-3)}-2$
Solve for a $4=a \sqrt{4}$

$$
4=2 a
$$

$$
2=a
$$

$$
\therefore y=2 \sqrt{-(x-3)}-2
$$

Ex: Find the rule of a square root function with a vertex at $(5,12)$ and passing through the point $(30,0)$ Sketch the function to determine the sign of b.

Given the sketch, we know $a<0$ and $b>0$
So use the rule $y=a \sqrt{(x-h)}+k$
Plug in h and $k: y=a \sqrt{(x-5)}+12$
Plug in x and $\mathrm{y}: 0=a \sqrt{(30-5)}+12$
Solve for a $-12=a \sqrt{25}$

$$
-12=5 a
$$

$$
-\frac{12}{5}=a
$$

$$
\therefore y=-\frac{12}{5} \sqrt{(x-5)}+12
$$

Graphing a Square Root Function

There are 5 steps to graphing a square root function, given the rule.

1) Determine the vertex
2) Determine the signs of a and b (and thus the direction of the function)
3) Create a table of values for additional points. (Pick a few x values higher than h if b is positive and lower than h if b is negative.)
4) Solve for the corresponding y values
5) Plot points and connect the dots

Ex: Graph the function $y=-2 \sqrt{-3 x+12}-2$
$y=-2 \sqrt{-3 x+12}-2$
$y=-2 \sqrt{-3(x-4)}-2$
Therefore, vertex: $(4,-2)$

$$
a<0 \quad b<0
$$

\mathbf{x}	\mathbf{y}
4	-2
1	-8
-1	-9.75

$$
\begin{aligned}
& y=-2 \sqrt{-3(x-4)}-2 \\
& y=-2 \sqrt{-3(1-4)}-2
\end{aligned}
$$

$$
y=-2 \sqrt{-3(x-4)}-2
$$

$$
y=-2 \sqrt{-3(-1-4)}-2
$$

$$
y=-2 \sqrt{15}-2
$$

$$
y=-9.75
$$

Solving Square Root Functions

To solve for y, plug in x and solve (remember to only take the positive root).
To solve for x :

1) Isolate the radical
2) State domain restrictions (the value under the radical cannot be negative)
3) Solve for x
4) Check for extraneous answers (plug solution into equation)

Ex: Given $y=2 \sqrt{2 x-4}$, solve for y when $x=4$

$$
\begin{gathered}
y=2 \sqrt{2 x-4} \\
y=2 \sqrt{2(4)-4} \\
y=2 \sqrt{4} \\
y=4
\end{gathered}
$$

Ex: Given $y=2 \sqrt{2 x-4}$, solve for x when $y=0$

$$
\begin{gathered}
y=2 \sqrt{2 x-4} \\
0=2 \sqrt{2 x-4} \\
0=\sqrt{2 x-4} \\
0=2 x-4 \\
4=2 x \\
2=x
\end{gathered}
$$

Domain Restrictions

$$
\begin{gathered}
2 x-4 \geq 0 \\
2 x \geq 4 \\
x \geq 2
\end{gathered}
$$

Check for extraneous answers

$$
\begin{gathered}
y=2 \sqrt{2 x-4} \\
0=2 \sqrt{2(2)-4} \\
0=2 \sqrt{0} \\
0=0 \\
\text { True }
\end{gathered}
$$

Ex: Given $y=2 \sqrt{x-3}$, solve for x when $y=4$

$$
\begin{gathered}
4=2 \sqrt{x-3} \\
2=\sqrt{x-3} \\
4=x-3 \\
7=x
\end{gathered}
$$

Domain Restrictions

$$
\begin{gathered}
x-3 \geq 0 \\
x \geq 3
\end{gathered}
$$

Check for extraneous answers

$$
\begin{gathered}
4=2 \sqrt{7-3} \\
4=2 \sqrt{4} \\
4=4 \\
\text { True }
\end{gathered}
$$

Solution: $\boldsymbol{x}=7$

Ex: Given $y=2 \sqrt{x+3}+2$, solve for the zero of the function

$$
\begin{gathered}
0=2 \sqrt{x+3}+2 \\
-2=2 \sqrt{x+3} \\
-1=\sqrt{x+3} \\
\text { No Solution }
\end{gathered}
$$

Note: There is no solution because when working with square root functions, we always take the positive root. Anytime we have $\sqrt{ }=-$, there will be no solution

Ex: Determine when the following two functions intersect
$f(x)=2 \sqrt{x+4}-1$ and $g(x)=x$

$$
\begin{aligned}
& x=2 \sqrt{x+4}-1 \\
& x+1=2 \sqrt{x+4} \\
& \frac{x+1}{2}=\sqrt{x+4} \\
& \left(\frac{x+1}{2}\right)^{2}=x+4
\end{aligned}
$$

$$
\frac{(x+1)(x+1)}{(2)(2)}=x+4
$$

$$
\frac{x^{2}+2 x+1}{4}=x+4
$$

$$
\begin{gathered}
x^{2}+2 x+1=4(x+4) \\
x^{2}+2 x+1=4 x+16 \\
x^{2}-2 x-15=0 \\
(x-5)(x+3)=0 \\
x=5 \text { and } x=-3
\end{gathered}
$$

Domain Restrictions

$$
\begin{gathered}
x+4 \geq 0 \\
x \geq-4
\end{gathered}
$$

Both answers are consistent with the restrictions

Check for extraneous answers

$$
\begin{gathered}
x=2 \sqrt{x+4}-1 \\
5=2 \sqrt{5+4}-1 \\
5=6-1 \\
5=5 \\
\text { True }
\end{gathered}
$$

When $x=5, y=x$ so $y=5$ intersection: $(5,5)$

$$
\begin{gathered}
x=2 \sqrt{x+4}-1 \\
-3=2 \sqrt{-3+4}-1 \\
-3=2-1 \\
-3=1
\end{gathered}
$$

False

Solving Square Root Inequalities

To solve a square root inequality:

1) Isolate the radical
2) State the domain restrictions
3) Solve (remember to change the inequality if you multiply or divide by a negative number)
4) Check against domain restrictions
5) State solution

Ex: Solve $2 \sqrt{2 x+4}-6>2$

$$
\begin{gathered}
2 \sqrt{2 x+4}-6>2 \\
2 \sqrt{2 x+4}>8 \\
\sqrt{2 x+4}>4 \\
2 x+4>16 \\
2 x>12 \\
x>6
\end{gathered}
$$

Domain Restrictions

$$
\begin{gathered}
2 x+4 \geq 0 \\
2 x \geq-4 \\
x \geq-2
\end{gathered}
$$

Check against domain restrictions

The solution is $x>6$. That is consistent with the domain restrictions, and the domain offers no additional restrictions.

Solution: $x>6$ or $2 \sqrt{2 x+4}-6>2$ over $] 6,+\infty[$

Ex: Solve $-2 \sqrt{x-3}+4>0$

$$
\begin{gathered}
-2 \sqrt{x-3}+4>0 \\
-2 \sqrt{x-3}>-4 \\
\sqrt{x-3}<2 \\
x-3<4 \\
x<7
\end{gathered}
$$

Domain Restrictions

$$
\begin{gathered}
x-3 \geq 0 \\
x \geq 3
\end{gathered}
$$

Check against domain restrictions
This domain offers us a lower limit of 3 , and our solution gives us an upper limit of 7 .

$$
\begin{gathered}
\text { Solution: } 3 \leq x<7 \\
\text { or }-2 \sqrt{x-3}+4>0 \text { over }[3,7[
\end{gathered}
$$

Ex: Solve $2 \sqrt{3(x-4)}+2 \geq 1$

$$
\begin{gathered}
2 \sqrt{3(x-4)}+2 \geq 1 \\
2 \sqrt{3(x-4)} \geq-1 \\
\sqrt{3(x-4)} \geq-0.5
\end{gathered}
$$

We know the term under the radical cannot equal a negative number, so we either have no solution or a solution that exists everywhere the function is defined.

Check a sketch to determine solution

Sketch

Vertex: (4, 2) $a>0 \quad b>0$

From the sketch we can see that the function is always greater than or equal to 1 (but limited to the domain of the function)

Solution: $4 \leq x$
or $2 \sqrt{3(x-4)}+2 \geq 1$ over $[4,+\infty[$

Finding the Inverse of a Square Root Function

We find the inverse of a square root function in the same way we find the inverse of any function.
Important note: we can think of a square root function as half of a sideways parabola. Because of this, square root functions and squared functions (parabolas) are not the exact inverse of each other - there are domain/range restrictions.

Recall: the domain of a function becomes the range of its inverse and the range of a function becomes the domain of its inverse.

Ex: Find the inverse of $f(x)=2(x-4)^{2}-3$, sketch both, and state the domain and range for both.
$y=2(x-4)^{2}-3 \quad$ Domain: $]-\infty,+\infty[\quad$ Range: $[-3,+\infty[$
Inverse
$x=2(y-4)^{2}-3$
$y=\sqrt{\frac{x+3}{2}}$ so $f^{-1}(x)=\sqrt{\frac{x+3}{2}}$
Domain: $[-3,+\infty[\quad$ Range: $]-\infty,+\infty[$

Note that the inverse is a relation (not a function) because we have to consider the positive and negative solutions when taking the square root, which is not the case in a square root function.

Ex: Find the inverse of $y=\sqrt{\frac{x+3}{2}}+4$, sketch both, and state the domain and range for both.
$y=\sqrt{\frac{x+3}{2}}+4 \quad$ Domain: $]-3,+\infty[\quad$ Range: $[4,+\infty[$
Inverse
$x=\sqrt{\frac{y+3}{2}}+4$
$y=2(x-4)^{2}-3$ so $f^{-1}(x)=2(x-4)^{2}-3$
Domain: [4, $+\infty$ [Range: $]-3,+\infty[$

Note the restricted domain, which gives us only half of a parabola. This is because when talking about square root functions, we only take the positive root, by definition.

