Logarithmic Functions Practice Questions

1) Re-write each of the following equalities in logarithmic form.
a) $3^{4}=81$
b) $s^{v}=w$
c) $5^{3 / 2}=\sqrt{125}$
d) $\left(\frac{1}{3}\right)^{3}=\frac{1}{27}$
e) $3^{0}=1$
f) $\left(\frac{1}{4}\right)^{-4}=256$
2) Re-write each of the following equalities in exponential form
a) $\log _{2} 32=5$
b) $\log 1000=3$
c) $\log _{4} \frac{1}{4}=-1$
d) $\log _{5} 1=0$
e) $\log _{2} \frac{1}{16}=-4$
f) $\log _{3} 3^{4}=4$
3) Use your calculator to evaluate each logarithm to 4 decimal places.
a) $\log 5$
b) $\ln 3$
c) $\log _{3} 90$
d) $\log _{3} \frac{1}{27}$
e) $\ln e$
f) $\log _{\frac{1}{3}} 9$
4) Solve each equation for x
a) $\log _{\frac{1}{3}} x=4$
b) $\log _{x} 64=3$
c) $\log \sqrt{8}=x$
d) $3^{x}=12$
e) $x^{5}=0.5$
f) $\ln x=10$
g) $\log _{3}-7=x$
h) $\log _{3} 7=x$
i) $\log x^{2}=10000$
5) Re-write each of the following expressions using a single logarithm
a) $4 \log _{3} 6$
b) $\log 5+\log 5+\log 5$
c) $4 \log _{3} 81-\log _{3} 9$
d) $4 \log _{m} x-2 \log _{m} x$
e) $2 \log a+5 \log b$
f) $3 \log x+\frac{1}{2} \log y$
g) $2 \log _{a} m+\log _{a} n-5 \log _{a} p$
h) $\log \left(x^{2}-1\right)-\log (x-1) \quad$ i) $\frac{\log _{a} 16}{\log _{a} 4}-\log _{4} 2$
j) $\log _{4} x+\log _{6} 20$
k) $\log _{2} x+\log _{4} y-\log _{16} z$
6) For each of the following cases, indicate whether the function is increasing or decreasing.
a) $f(x)=\log _{2} x$
b) $g(x)=\log _{0.3} x$
c) $h(x)=2 \ln x+9$
d) $i(x)=3 \log _{0.5}(4-x)+1$
e) $j(x)=-\ln (x-7)$
f) $k(x)=\log (x+5)+8$
7) Find the equation of the asymptote of the curve associated with each of the functions defined below.
a) $f(x)=-\log (4(x+3))+5$
b) $g(x)=5 \log (2 x+8)-6$
8) Sketch the graphs of the following functions.
a) $\log _{3} x$
b) $\log x^{1 / 4}$

9) Determine the rule of each of the logarithmic functions represented in the graphs below.

b)

d)

10) Solve the following:
a) Given $f(x)=\log _{\frac{1}{2}}(2(x+4))-10$

Determine when $f(x)=14$
b) Given $g(x)=-2 \log _{3}\left(-\frac{1}{2}(x+2)\right)+4$ Determine when $g(x)=-6$
c) Given $h(x)=-\frac{1}{2} \log _{0.7}(3 x+2)-10$

Determine when $h(x)=-5.8$
d) Given $i(x)=\log (2 x+3)$
and $j(x)=\log 4-x$
Determine when $i(x)=j(x)$
11) Solve the following inequalities:
a) $20 \log (x-5)+30 \geq 50$
b) Determine the interval over which $-2 \log _{0.3}(3 x+4)-8 \leq 2$
c) $-0.5 \ln 2 x<-6$
d) $-3 \log x \leq 21$
c) Given $f(x)=-2 \log _{2}(-x)$ and $g(x)=2 \log _{4}(x+6)-2$ Determine the interval over which $f(x) \leq g(x)$.
12) Solve the following exponential functions:
a) $\left(\frac{1}{2}\right)^{x+2}=28$
b) $13^{\left(\frac{2-x}{4}\right)}=\frac{3}{8}$
c) $21^{4 x}=0.35$
d) $3\left(\frac{1}{2}\right)^{-2 x+5}=21$
e) $3^{x+5}=4^{x+3}$
f) $2.5(10)^{x}=6\left(e^{4 x-3}\right)$
13) The value, V (in \$) of an investment changes according to the rule $V=15000(1.015)^{2 t}$ where t is time (in years). When is the value of the investment:
a) $\$ 15000$
b) $\$ 20000$
c) $\$ 22,000$
14) The town of Springfield is growing at a rate of 6.5% per year. How many people are there in Springfield now, if there will be 15000 people in 4.5 years?
15) A delivery company estimates that its road equipment depreciates by 30% each year. After 5 years one of its transport trucks was worth \$12605.
a) How much did the company pay for this truck?
b) After how much time was the truck worth 10% of its original cost?
16) To produce maple syrup, 1000 L of sap is boiled until 97.5% of its initial quantity has evaporated. With each hour of boiling, the quantity of sap decreases by 10% in relation to the amount from the previous hour. When should the boiling process be stopped?
17) State the rule for the inverse of each of the functions defined below.
a) $f(x)=\log _{4} x$
b) $g(x)=\log x^{1 / 3}$
c) $h(x)=\log _{6} x$
d) $f(x)=2 \log _{5} 3(x-1)$
e) $g(x)=-\log 2 x+15$
f) $h(x)=-\ln -(x+3)-10$
18) Camilla deposits a $\$ 1500$ scholarship she received into an account with an annual interest rate of 3.5% compounded every 6 months. When does the value of the investment reach \$2500?

