Logarithmic Functions Practice Questions

Log Basics

1) Re-write each of the following equalities in logarithmic form.
a) $3^{4}=81$
b) $s^{v}=w$
c) $5^{3 / 2}=\sqrt{125}$
$\log _{3} 81=4$
$\log _{s} w=v$
$\log _{5} \sqrt{125}=\frac{3}{2}$
d) $\left(\frac{1}{3}\right)^{3}=\frac{1}{27}$
e) $3^{0}=1$
$\log _{3} 1=0$
f) $\left(\frac{1}{4}\right)^{-4}=256$
$\log _{1 / 3} \frac{1}{27}=3$
$\log _{1 / 4} 256=-4$
2) Re-write each of the following equalities in exponential form
a) $\log _{2} 32=5$
b) $\log 1000=3$
$2^{5}=32$
$10^{3}=1000$
c) $\log _{4} \frac{1}{4}=-1$
$4^{-1}=\frac{1}{4}$
d) $\log _{5} 1=0$
e) $\log _{2} \frac{1}{16}=-4$
$2^{-4}=\frac{1}{16}$
f) $\log _{3} 3^{4}=4$
$3^{4}=3^{4}$
3) Use your calculator to evaluate each logarithm to 4 decimal places.
a) $\log 5$
b) $\ln 3$
c) $\log _{3} 90$
$=0.6990$
$=1.0986$
$=4.0960$
d) $\log _{3} \frac{1}{27}$
e) $\ln e$
f) $\log _{\frac{1}{3}} 9$
$=-3.000$
$=1.000$
$=-2.000$
4) Solve each equation for x
a) $\log _{1} x=4$
b) $\log _{x} 64=3$
c) $\log \sqrt{8}=x$
$x=\frac{1}{81}$
$x=4$
$x=0.4515$
d) $3^{x}=12$
e) $x^{5}=0.5$
f) $\ln x=10$
$x=2.2619$
$x=0.8706$
$x=22-26.4658$
g) $\log _{3}-7=x$
h) $\log _{3} 7=x$
i) $\log x^{2}=10000$
no solution
$x=1.7712$
$x=10^{5000}$
5) Re-write each of the following expressions using a single logarithm

$\begin{aligned} & \text { a) } 4 \log _{3} 6 \\ & =\log _{3} 1296 \end{aligned}$	$\begin{aligned} & \text { b) } \log 5+\log 5+\log 5 \\ & =\log 125 \end{aligned}$	$\begin{aligned} & \text { c) } 4 \log _{3} 81-\log _{3} 9 \\ & =\log _{3} 9^{7} \end{aligned}$
$\text { d) } \begin{array}{r} 4 \log _{m} x-2 \log _{m} x \\ =m x^{2} \end{array}$	$\text { e) } \begin{aligned} 2 \log a & +5 \log b \\ = & \log a^{2} b^{5} \end{aligned}$	$\text { f) } \begin{aligned} 3 \log x & +\frac{1}{2} \log y \\ = & \log x^{3} y^{1 / 2} \end{aligned}$
$\text { g) } \begin{aligned} 2 \log _{a} m & +\log _{a} n-5 \log _{a} p \\ = & \log _{a} \frac{m^{2} n}{p^{5}} \end{aligned}$	$\text { h) } \begin{gathered} \log \left(x^{2}-1\right)-\log (x-1) \\ =\log (x+1) \end{gathered}$	$\text { i) } \begin{aligned} \frac{\log a 16}{\log _{a} 4}- & \log _{4} 2 \\ & =\log _{4} 8 \end{aligned}$
$\text { j) } \begin{aligned} & \log _{4} x+\log _{6} 20 \\ &=\log _{4} x+1.6720 \end{aligned}$	$\text { k) } \log _{2} x+$	$\begin{aligned} & { }_{4} y-\log _{16} z \\ & =\log _{2} \frac{x y^{1 / 2}}{z^{1 / 4}} \end{aligned}$

6) For each of the following cases, indicate whether the function is increasing or decreasing.
a) $f(x)=\log _{2} x$
b) $g(x)=\log _{0.3} x$
c) $h(x)=2 \ln x+9$ Increasing Decreasing
Increasing
d) $i(x)=3 \log _{0.5}(4-x)+1$
e) $j(x)=-\ln (x-7)$
f) $k(x)=\log (x+5)+8$
Decreasing
Decreasing
Increasing
7) Find the equation of the asymptote of the curve associated with each of the functions defined below.
a) $f(x)=-\log (4(x+3))+5$
$x=-3$
b) $g(x)=5 \log (2 x+8)-6$
$x=-4$
8) Sketch the graphs of the following functions.
a) $\log _{3} x$
b) $\log x^{1 / 4}$

9) Determine the rule of each of the logarithmic functions represented in the graphs below.
a) $x=3$

$$
f(x)=\log _{2} 0.5(x-3)
$$

c)

$f(x)=\log _{1.5}-(x-5)$

e)

$$
f(x)=\log _{8} \frac{2}{3}(x-8)
$$

b)

d)

$$
f(x)=\log _{7}-\frac{1}{3}(x+7)
$$

$$
f(x)=\log _{1 / 2} \frac{1}{7}(x+10)
$$

10) Solve the following:
a) Given $f(x)=\log _{\frac{1}{2}}(2(x+4))-10$
Determine when $f(x)=14$
$x=-3.999$
(or no solution, depending on rounding)
b) Given $g(x)=-2 \log _{3}\left(-\frac{1}{2}(x+2)\right)+4$ Determine when $g(x)=-6$

$$
x=-488
$$

c) Given $h(x)=-\frac{1}{2} \log _{0.7}(3 x+2)-10$ Determine when $h(x)=-5.8$

$$
x=6
$$

d) Given $i(x)=\log (2 x+3)$ and $j(x)=\log 4-x$
Determine when $i(x)=j(x)$

$$
x=0.333
$$

11) Solve the following inequalities:
a) $20 \log (x-5)+30 \geq 50$
b) Determine the interval over which
$[15, \infty$ [

$$
\begin{aligned}
& -2 \log _{0.3}(3 x+4)-8 \leq 2 \\
&]-\frac{4}{3}, 135.8409\right]
\end{aligned}
$$

c) $-0.5 \ln 2 x<-6$
]81377.3957, ∞ [
d) $-3 \log x \leq 21$
[0.00000001, ∞ [
c) Given $f(x)=-2 \log _{2}(-x)$ and $g(x)=2 \log _{4}(x+6)-2$

Determine the interval over which $f(x) \leq g(x)$.
$[-5.616,-0.354]$
12) Solve the following exponential functions:
a) $\left(\frac{1}{2}\right)^{x+2}=28$
b) $13^{\left(\frac{2-x}{4}\right)}=\frac{3}{8}$
$x=-6.8074$
$x=3.5296$
c) $21^{4 x}=0.35$
$x=-0.0862$
d) $3\left(\frac{1}{2}\right)^{-2 x+5}=21$
$x=3.9037$
e) $3^{x+5}=4^{x+3}$
$x=4.636$
f) $2.5(10)^{x}=6\left(e^{4 x-3}\right)$
$x=-1.6311$
13) The value, V (in \$) of an investment changes according to the rule $V=15000(1.015)^{2 t}$ where t is time (in years). When is the value of the investment:
a) $\$ 15000$
b) $\$ 20000$
c) $\$ 22,000$
a) $t=0$ years
b) $t=9.6611$ years
c) $t=12.8619$ years
14) The town of Springfield is growing at a rate of 6.5% per year. How many people are there in Springfield now, if there will be 15000 people in 4.5 years?

There are 11298 people
15) A delivery company estimates that its road equipment depreciates by 30% each year. After 5 years one of its transport trucks was worth \$12605.
a) How much did the company pay for this truck?
b) After how much time was the truck worth 10% of its original cost?
a) $\$ 74998.51$
b) 6.46 years
16) To produce maple syrup, 1000 L of sap is boiled until 97.5% of its initial quantity has evaporated. With each hour of boiling, the quantity of sap decreases by 10% in relation to the amount from the previous hour. When should the boiling process be stopped?

The boiling process should be stopped after 35.01 hours.
17) State the rule for the inverse of each of the functions defined below.
a) $f(x)=\log _{4} x$
b) $g(x)=\log x^{1 / 3}$
c) $h(x)=\log _{6} x$
$f^{-1}(x)=4^{x}$
$g^{-1}(x)=10^{3 x}$ $h^{-1}(x)=6^{x}$
d) $f(x)=2 \log _{5} 3(x-1)$
e) $g(x)=-\log 2 x+15$
f) $h(x)=-\ln -(x+3)-10$
$f^{-1}(x)=\frac{1}{3}\left(5^{x / 2}\right)+1$ $g^{-1}(x)=\frac{1}{2}\left(10^{-(x-15)}\right)$
$h^{-1}(x)=-\left(e^{-(x+10)}\right)+3$
18) Camilla deposits a $\$ 1500$ scholarship she received into an account with an annual interest rate of 3.5% compounded every 6 months. When does the value of the investment reach $\$ 2500$?

After 14.7229 years

