Conics - Circles Notes

Locus/Loci

- a set of point that have a common metric property
- ex: A circle is a locus of points all equal distance from the center
- a path of an object which can be defined by an equation
- finding the equation of a locus amounts to finding a relation between x and y coordinates of point " P " that travel the locus

Conic

- Is the figure formed by the intersection of a plane with a conical surface
- circle, ellipse, hyperbola, parabola
- always a locus of points

Circle

A circle is a locus of points whereby each point is the same distance from the center. It is a relation (not function)

Basic Equation - centered at the origin, and where r is the radius

$$
x^{2}+y^{2}=r^{2}
$$

Transformed Equation - centered at (h, k), and where r is the radius

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Ex: $x^{2}+y^{2}=9$ and solve for y when $x=2$
center at $(0,0)$, radius of 3
From center, move right 3, left 3, up 3, and down 3 to get points on the circle

$$
\begin{gathered}
x^{2}+y^{2}=9 \\
2^{2}+y^{2}=9 \\
4+y^{2}=9 \\
y^{2}=5 \\
y= \pm \sqrt{5}
\end{gathered}
$$

*Note: unlike square root functions, we need to take both the positive and negative root when solving. Looking at the graph, when x is 2 , we can see that there are $2 y$-values, $+\sqrt{5}$ and $-\sqrt{5}$.

Ex: $(x-3)^{2}+(y+1)^{2}=16$ and solve for x when $y=2$
center at $(3,-1)$, radius of 4
From center, move right 4, left 4, up 4, down 4

$$
\begin{gathered}
(x-3)^{2}+(y+1)^{2}=16 \\
(x-3)^{2}+(2+1)^{2}=16 \\
(x-3)^{2}+(3)^{2}=16 \\
(x-3)^{2}+9=16 \\
(x-3)^{2}=7 \\
(x-3)=+\sqrt{7} \text { and }(x-3)=-\sqrt{7} \\
x=3+\sqrt{7} \text { and } x=3-\sqrt{7}
\end{gathered}
$$

Ex: Find the rule of the following circles in standard form (the basic or transformed equation above)

Center is $(2,0)$, so
$h=2$ and $k=0$
$(x-h)^{2}+(y-k)^{2}=r^{2}$

$$
(x-2)^{2}+y^{2}=r^{2}
$$

Use point (5, 4)

$$
\begin{gathered}
(5-2)^{2}+4^{2}=r^{2} \\
3^{2}+4^{2}=r^{2} \\
9+16=r^{2} \\
25=r^{2}
\end{gathered}
$$

So

$$
(x-2)^{2}+y^{2}=25
$$

b)

$$
\begin{gathered}
x^{2}+6 x+y^{2}-2 y+1=0 \\
x^{2}+6 x+y^{2}-2 y=-1
\end{gathered}
$$

You will have to complete the square for x and for y.

Reminder: that the coefficient on x , divide by 2 , and square it. Do the same for y. Add that to both sides.

$$
\begin{gathered}
x^{2}+6 x+\mathbf{9}+y^{2}-2 y+\mathbf{1}=-1+\mathbf{9}+\mathbf{1} \\
x^{2}+6 x+9+y^{2}-2 y+1=9
\end{gathered}
$$

Now factor the x terms and the y terms

$$
(x+3)^{2}+(y-1)^{2}=9
$$

c)

$$
\begin{gathered}
x^{2}+y^{2}-8 x+4 y=-4 \\
x^{2}-8 x+y^{2}+4 y=-4 \\
x^{2}-8 x+16+y^{2}+4 y+4=16 \\
(x-4)^{2}+(y+2)^{2}=16
\end{gathered}
$$

Inequalities

- if $(x-h)^{2}+(y-k)^{2} \leq r^{2}$ use solid line and shade inside
- if $(x-h)^{2}+(y-k)^{2}<r^{2}$ use dotted line and shade inside
- if $(x-h)^{2}+(y-k)^{2} \geq r^{2}$ use solid line and shade outside
- if $(x-h)^{2}+(y-k)^{2} \leq r^{2}$ use dotted line and shade outside

Tangent Lines

Line tangent to circle intersects (touches) the outside of the circle only once and is perpendicular to the radius.

Reminder: perpendicular lines have slopes that are negative reciprocals (flip the fraction and change the sign).

Ex: Find the equation of the tangent line drawn below.

Find slope of radius (going through the tangent point)

$$
\begin{gathered}
a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
a=\frac{-3-5}{-2--3}=-\frac{8}{1}=-8
\end{gathered}
$$

So slope of tangent line is the negative reciprocal, which is $\frac{1}{8}$
Find the equation of the line (using the known point on the line):

$$
\begin{aligned}
y & =a x+b \\
y & =\frac{1}{8} x+b \\
-3 & =\frac{1}{8}(-2)+b \\
-3 & =\frac{-1}{4}+b \\
& -\frac{11}{4}=b \\
\therefore y & =\frac{1}{8} x-\frac{11}{4}
\end{aligned}
$$

