A system of equations is when we have more than one equation.

The solution is the point (x, y) where the two functions cross each other. We can find the solution to a system of equations graphically or algebraically (using elimination, comparison, or substitution).

Using a graph to solve:

The find a solution, graph both functions. The solution is the point where the functions cross, written as an ordered pair (x, y). Remember, you may need to re-arrange the equation before you can graph it.

Ex: Find the solution to the linear system.

$$
y=2 x+1 \text { and } x+y=4
$$

Try these questions! Find the solution to the linear systems.

$$
\text { 1a) } y=3 \text { and } 2 x+4 y=16
$$

b) $y=4 x$ and $y=-2 x+6$

The graphing method is not an accurate way to solve linear systems. For example, it is difficult to tell the different between $(2.3,4.6)$ and $(2.2,4.7)$. Therefore, we will use algebra to solve linear systems.

There are 3 methods we can use: elimination, comparison, and substitution.

Using the elimination method to solve:

- Both lines must be in the form $A x+B y=C$.
- Multiply the entire first equation by the coefficient of x in the second equation.
- Multiply the entire second equation by the coefficient of x in the first equation, but change the sign.
- Add the two equations.
- Solve for the remaining variable.
- Use the solution in either equation to solve for the other variable.
- Write the solution (x, y).

Ex: Find the solution to the linear systems.
a) $2 x+5 y=16$ and $3 x-4 y=1$
b) $4 x-5 y=10$ and $y=-\frac{5}{3} x+35$

Try these questions! Find the solution to the linear systems.
2a) $2 x+5 y=-4$ and $3 x-2 y=13$
b) $3 x+4 y=-6$ and $y=-2 x+1$

Using the comparison method to solve:

- Both lines must be in the form $y=a x+b$.
- Take the $a x+b$ pieces from each equation and set them equal to each other $a x+b=$ $a x+b$.
- Solve for x .
- Use either equation (and the value of x you just found) to solve for y .
- Write the solution (x, y).

Ex: Find the solution to the linear systems.
a) $y=2 x+1$ and $y=-1.5 x+4.5$
b) $y=-2 x-6$ and $5 x+y=-3$

Try these questions! Find the solution to the linear systems.
3a) $y=2 x+5$ and $y=-4 x+11$
b) $y=0.5 x+2$ and $y-2 x=-1$

Using the substitution method to solve:

- This method works best if we already know the value of x or y.
- Use the equation that has both variables and replace the known variable.
- Solve for the missing variable.
- Write the solution as (x, y).

Ex: Find the solution to the linear systems.
a) $x=2$ and $y=3 x+8$
b) $y=3$ and $3 x+4 y=20$

Try these questions! Find the solution to the linear systems.
4a) $y=5$ and $y=2 x-15$
b) $x=4$ and $3 x+2 y=20$

Practice Questions

1) Solve the system using graphing:

$$
y=4 x-10 \text { and } y=\frac{1}{3} x+1
$$

3) Solve the system using elimination:
$8 x-6 y=-20$ and $-16 x+7 y=30$
2) Solve the system using graphing:
$y=-3 x+4$ and $y+2=3 x$

4) Solve the system using elimination: $-4 y-11 x=36$ and $20=-10 x-10 y$
5) Solve the system using comparison:

$$
y=x-13 \text { and } y=-2 x+5
$$

6) Solve the system using comparison:
$y=-4 x+2$ and $x-y=3$
7) Solve the system using substitution:
$y=-5$ and $5 x+4 y=-20$
8) Solve the system using substitution:
$x=3$ and $4 x-y=20$

Answer Key

Questions in the Notes

1a)

The solution is $(2,3)$

2a) The solution is $(3,-2)$

3a) The solution is $(1,7)$

4a) The solution is $(10,5)$

1b)

The solution is $(1,4)$
$\mathbf{2 b})$ The solution is $(2,-3)$

3b) The solution is $(2,3)$

4b) The solution is $(4,4)$

Practice Questions

1) The solution is $(3,2)$
2) The solution is $(1,1)$
3) The solution is $(-1,2)$
4) The solution is $(-4,2)$
5) The solution is $(6,-7)$
6) The solution is $(1,-2)$
7) The solution is $(0,-5)$
8) The solution is $(3,-8)$
